Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

The importance of repairing stalled replication forks

Abstract

The bacterial SOS response to unusual levels of DNA damage has been recognized and studied for several decades. Pathways for re-establishing inactivated replication forks under normal growth conditions have received far less attention. In bacteria growing aerobically in the absence of SOS-inducing conditions, many replication forks encounter DNA damage, leading to inactivation. The pathways for fork reactivation involve the homologous recombination systems, are nonmutagenic, and integrate almost every aspect of DNA metabolism. On a frequency-of-use basis, these pathways represent the main function of bacterial DNA recombination systems, as well as the main function of a number of other enzymatic systems that are associated with replication and site-specific recombination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Some potential pathways for the nonmutagenic re-establishment of inactivated replication forks in bacteria.
Figure 2: Creation and resolution of contiguous chromosomal dimers as a byproduct of the recombination required for re-establishment of inactivated replication forks.

Similar content being viewed by others

References

  1. Hanawalt, P. C. The U.V. sensitivity of bacteria: its relation to the DNA replication cycle. Photochem. Photobiol. 5, 1– 12 (1966).

    Article  CAS  PubMed  Google Scholar 

  2. Skalka, A. in Mechanisms in Recombination (ed. Grell, R. F.) 421– 432 (Plenum, New York, 1974).

    Book  Google Scholar 

  3. West, S. C., Cassuto, E. & Howard-Flanders, P. Mechanism of E. coli RecA protein directed strand exchanges in post-replication repair of DNA. Nature 294, 659–662 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Luder, A. & Mosig, G. Two alternative mechanisms for initiation of DNA replication forks in bacteriophage T4: priming by RNA polymerase and by recombination. Proc. Natl Acad. Sci. USA 79, 1101–1105 (1982).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Formosa, T. & Alberts, B. M. DNA synthesis dependent on genetic recombination: characterization of a reaction catalyzed by purified bacteriophage T4 proteins. Cell 47, 793– 806 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. Zavitz, K. H. & Marians, K. J. Dissecting the functional role of PriA protein-catalysed primosome assembly in Escherichia coli DNA replication. Mol. Microbiol. 5, 2869– 2873 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Kuzminov, A. Collapse and repair of replication forks in Escheria coli. Mol. Microbiol. 16, 373–384 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Kogoma, T. Recombination by replication. Cell 85, 625 –627 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Sandler, S. J., Samra, H. S. & Clark, A. J. Differential suppression of priA2::kan phenotypes in Escherichia coli K-12 by mutations in priA, lexA, and dnaC. Genetics 143, 5–13 ( 1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kogoma, T. Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol. Mol. Biol. Rev. 61, 212–238 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. McGlynn, P., Al, D. A., Liu, J., Marians, K. J. & Lloyd, R. G. The DNA replication protein PriA and the recombination protein RecG bind D-loops. J. Mol. Biol. 270, 212–221 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Cox, M. M. Recombinational crossroads—eukaryotic enzymes and the limits of bacterial precedents. Proc. Natl Acad. Sci. USA 94, 11764–11766 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Michel, B., Ehrlich, S. D. & Uzest, M. DNA double-strand breaks caused by replication arrest. EMBO J. 16, 430–438 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Seigneur, M., Bidnenko, V., Ehrlich, S. D. & Michel, B. RuvAB acts at arrested replication forks. Cell 95, 419–430 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Steiner, W. W. & Kuempel, P. L. Sister chromatid exchange frequencies in Escherichia coli analyzed by recombination at the dif resolvase site. J. Bacteriol. 180, 6269–6275 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mosig, G. Recombination and recombination-dependent DNA replication in bacteriophage T4. Annu. Rev. Genet. 32, 379– 413 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Neilson, L., Blakely, G. & Sherratt, D. J. Site-specific recombination at dif by Haemophilus influenzae XerC. Mol. Microbiol. 31, 915–926 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Rangarajan, S., Woodgate, R. & Goodman, M. F. A phenotype for enigmatic DNA polymerase II: a pivotal role for pol II in replication restart in UV-irradiated Escherichia coli . Proc. Natl Acad. Sci. USA 96, 9224 –9229 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bidnenko, V. et al. sbcS sbcC null mutations allow RecF-mediated repair of arrested replication forks in rep recBC mutants. Mol. Microbiol. 33, 846–857 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Saveson, C. J. & Lovett, S. T. Tandem repeat recombination induced by replication fork defects in Escherichia coli requires a novel factor, RadC. Genetics 152, 5– 13 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. McGlynn, P. & Lloyd, R. G. RecG helicase activity at three- and four-strand DNA structures. Nucleic Acids Res. 27, 3049–3056 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Marians, K. J. PriA: at the crossroads of DNA replication and recombination. Prog. Nucleic Acids Res. Mol. Biol. 63, 39– 47 (1999).

    Article  CAS  Google Scholar 

  23. Cox, M. M. Recombinational DNA repair in bacteria and the RecA protein. Prog. Nucleic Acids Res. Mol. Biol. 63, 310– 366 (1999).

    Google Scholar 

  24. Kuzminov, A. Recombinatorial repair in Escherichia coli. Microbiol. Mol. Biol. Rev. 63, 751–813 ( 1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Arai, K. et al. Enzyme studies of phi X174 DNA replication. Prog. Nucleic Acid Res. Mol. Biol. 26, 9– 32 (1981).

    Article  CAS  PubMed  Google Scholar 

  26. Marians, K. J. Enzymology of DNA in replication in prokaryotes. CRC Crit. Rev. Biochem. 17, 153–215 ( 1984).

    Article  CAS  PubMed  Google Scholar 

  27. Clark, A. J. & Sandler, S. J. Homologous genetic recombination: the pieces begin to fall into place. Crit. Rev. Microbiol. 20, 125–142 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Clark, A. J. & Margulies, A. D. Isolation and characterization of recombination-deficient mutants of Escherichia coli K12. Proc. Natl Acad. Sci. USA 53, 451– 459 (1965).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Howard-Flanders, P. & Theriot, L. Mutants of Escherichia coli K-12 defective in DNA repair and in genetic recombination. Genetics 53, 1137–1150 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nurse, P., Zavitz, K. H. & Marians, K. J. Inactivation of the Escherichia coli priA DNA replication protein induces the SOS response. J. Bacteriol. 173, 6686–6693 ( 1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kuzminov, A. Instability of inhibited replication forks in E. coli. Bioessays 17, 733–741 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  32. Liu, J. & Marians, K. J. PriA-directed assembly of a primosome on D loop DNA. J. Biol. Chem. 274, 25033 –25041 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, J. I., Xu, L. W., Sandler, S. J. & Marians, K. J. Replication fork assembly at recombination intermediates is required for bacterial growth. Proc. Natl Acad. Sci. USA 96, 3552 –3555 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sandler, S. J. et al. dnaC mutations suppress defects in DNA replication and recombination associated functions in priB and priC double mutants in E. coli K-12. Mol. Microbiol. 34, 91–101 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Sandler, S. J. & Marians, K. J. Role of PriA in replication fork reactivation in Escherichia coli. J. Bacteriol. 182, 9–13 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cox, M. M. A broadening view of recombinatorial DNA repair in bacteria. Genes to Cells 3, 65–78 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  37. Steiner, W. W. & Kuempel, P. L. Cell division is required for resolution of dimer chromosomes at the dif locus of Escherichia coli. Mol. Microbiol. 27, 257– 268 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Skarstad, K. & Boye, E. Degradation of individual chromosomes in recA mutants of Escherichia coli. J. Bacteriol. 75, 5505–5509 ( 1993).

    Article  Google Scholar 

  39. Marians, K. J. Prokaryotic DNA replication. Annu. Rev. Biochem. 61 , 673–719 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Anderson, D. G. & Kowalczykowski, S. C. The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a chi-regulated manner. Cell 90, 77–86 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Courcelle, J., Carswell-Crumpton, C. & Hanawalt, P. recF and recR are required for the resumption of replication at DNA replication forks in Escherichia coli. Proc. Natl Acad. Sci. USA 94, 3714–3719 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kuzminov, A. & Stahl, F. W. Double-strand end repair via the RecBC pathway in Escherichia coli primes DNA replication. Genes Dev. 13, 345–356 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shinagaw, H. SOS response as an adaptive response to DNA damage in prokaryotes. Exs 77, 221–235 ( 1996).

    Google Scholar 

  44. Tang, M. et al. Biochemical basis of SOS-induced mutagenesis in Escherichia coli: reconstitution of in vitro lesion bypass dependent on the UmuD′ 2C mutagenic complex and RecA protein. Proc. Natl Acad. Sci. USA 95, 9755–9760 ( 1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tang, M. J. et al. UmuD′2C is an error-prone DNA polymerase, Escherichia coli pol V. Proc. Natl Acad. Sci. USA 96, 8919–8924 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wagner, J. et al. The dinB gene encodes a novel E-coli DNA polymerase, DNA pol IV, involved in mutagenesis. Mol. Cell. 4, 281–286 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Woodgate, R. & Ennis, D. G. Levels of chromosomally encoded Umu proteins and requirements for in vivo UmuD cleavage. Mol. Gen. Genet. 229, 10–16 (1991).

    CAS  PubMed  Google Scholar 

  48. Kaguni, J. M. & Kornberg, A. Replication initiated at the origin (oriC) of the E. coli chromosome reconstituted with purified enzymes. Cell 38, 183–190 (1984).

    Article  CAS  PubMed  Google Scholar 

  49. Kogoma, T., Cadwell, G. W., Barnard, K. G. & Asai, T. The DNA replication priming protein, PriA, is required for homologous recombination and double-strand break repair. J. Bacteriol. 178, 1258–1264 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Steiner, W., Liu, G., Donachie, W. D. & Kuempel, P. The cytoplasmic domain of FtsK protein is required for resolution of chromosome dimers. Mol. Microbiol. 31, 579–583 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Recchia, G. D., Aroyo, M., Wolf, D., Blakely, G. & Sherratt, D. J. FtsK-dependent and -independent pathways of Xer site-specific recombination. EMBO J. 18, 5724– 5734 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Galitski, T. & Roth, J. R. Pathways for homologous recombination between chromosomal direct repeats in Salmonella typhimurium. Genetics 146, 751–767 ( 1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Haber, J. E. DNA recombination: the replication connection. Trends Biochem. Sci. 24, 271–275 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  54. Malkova, A., Ivanov, E. L. & Haber, J. E. Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc. Natl Acad. Sci. USA 93, 7131– 7136 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Morrow, D. M., Connelly, C. & Hieter, P. “Break copy” duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics 147, 371–382 ( 1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lundblad, V. & Blackburn, E. H. An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell 73, 347–360 (1993).

    Article  CAS  PubMed  Google Scholar 

  57. Le, S., Moore, J. K., Haber, J. E. & Greider, C. W. RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics. 152, 143–152 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Griffith, J. D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  59. Bosco, G. & Haber, J. E. Chromosome break-induced DNA replication leads to nonreciprocal translocations and telomere capture. Genetics 150, 1037–1047 ( 1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, C., Umezu, K. & Kolodner, R. D. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol. Cell 2, 9– 22 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Cordeiro-Stone, M., Makhov, A. M., Zaritskaya, L. S. & Griffith, J. D. Analysis of DNA replication forks encountering a pyrimidine dimer in the template to the leading strand. J. Mol. Biol. 289, 1207–1218 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Opperman, T., Murli, S., Smith, B. T. & Walker, G. C. A model for a umuDC-dependent prokaryotic DNA damage checkpoint. Proc. Natl Acad. Sci. USA 96, 9218–9223 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cox, M., Goodman, M., Kreuzer, K. et al. The importance of repairing stalled replication forks. Nature 404, 37–41 (2000). https://doi.org/10.1038/35003501

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35003501

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing