Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamics of supercooled water in confined geometry

Abstract

As with most liquids, it is possible to supercool1,2,3,4 water; this generally involves cooling the liquid below its melting temperature (avoiding crystallization) until it eventually forms a glass. The viscosity and related relaxation times (τ) of glass-forming liquids typically show non-Arrhenius temperature (T) dependencies. Liquids with highly non-Arrhenius behaviour in the supercooled region are termed ‘fragile’. In contrast, liquids whose behaviour is close to the Arrhenius law (ln τ 1/T) are termed ‘strong’ ( ref. 5). A unique ‘fragile–strong’ transition around 228 K has been proposed6 for supercooled water; however, experimental studies of bulk supercooled water in this temperature range are generally hampered because crystallization occurs. Here we use broad-band dielectric spectroscopy to study the relaxation dynamics of supercooled water in a wide temperature range, including the usually inaccessible temperature region. This is possible because the supercooled water is held within a layered vermiculite clay—the geometrical confinement and presence of intercalated sodium ions prevent7 most of the water from crystallizing. We find a relaxational process with an Arrhenius temperature dependence, consistent with the proposed strong nature of deeply supercooled bulk water. Because water that is less supercooled has been established6 as highly fragile, our results support the existence of a fragile–strong transition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dielectric spectra.
Figure 2: ε″(f) of the two-water-layer system at some representative temperatures.
Figure 3: Temperature dependence of the relaxation times obtained from fits of the spectra from the two-water-layer clay.

Similar content being viewed by others

References

  1. Tanaka, H. A self-consistent phase diagram for supercooled water. Nature 380, 328–330 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Mishima, O. & Stanley, H. E. The relationship between liquid, supercooled and glassy water. Nature 396, 329–335 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Angell, C. A. Supercooled water: approaching the limits. Nature 331 , 206–207 (1988).

    Article  ADS  Google Scholar 

  4. Smith, R. S. & Kay, B. D. The existence of supercooled liquid water at 150 K. Nature 398, 788– 791 (1999).

    Article  ADS  CAS  Google Scholar 

  5. Angell, C. A. Relaxations in liquids, polymers and plastic crystals—strong/fragile patterns and problems. J. Non-Cryst. Solids 131–133 , 13–31 (1991).

    Article  ADS  Google Scholar 

  6. Ito, K., Moynihan, C. T. & Angell, C. A. Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398, 492–495 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Bergman, R., Swenson, J. & Börjesson, L. Dielectric study of supercooled 2D-water in a vermiculite clay. J. Chem. Phys. (submitted).

  8. Stanley, H. E. Unsolved mysteries of water in its liquid and glass states. Mater. Res. Bull. 24, 22–30 ( 1999).

    Article  CAS  Google Scholar 

  9. Handa, Y. P. & King, D. D. Heat capacity and glass transition behavior of amorphous ice. J. Phys. Chem. 92, 3323–3325 (1988).

    Article  CAS  Google Scholar 

  10. Johari, G. P., Hallbrucker, A. & Mayer, E. The glass-liquid transition of hyperquenched water. Nature 330, 552–553 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Angell, C. A. in Water: A Comprehensive Treatise (ed. Franks, F.) 1– 81 (1982).

    Google Scholar 

  12. Speedy, R. J. & Angell, C. A. Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at -45° C. J. Chem. Phys. 65, 851–858 (1976).

    Article  ADS  CAS  Google Scholar 

  13. Sillescu, H. Heterogeneity at the glass transition: a review. J. Non-Cryst. Solids 243, 81–108 ( 1999).

    Article  ADS  CAS  Google Scholar 

  14. Ngai, K. L., Riande, E. & Wright, G. B. (eds) Proceedings of the Third International Discussion Meeting on Relaxations in Complex Systems. J. Non-Cryst. Solids 235–237, (1998).

  15. Barut, G., Pissis, P., Pelster, R. & Nimtz, G. Glass transition in liquids: Two versus three-dimensional confinement. Phys. Rev. Lett. 80, 3543–3546 ( 1998).

    Article  ADS  CAS  Google Scholar 

  16. Arndt, M., Stannarius, R., Groothues, H., Hempel, E. & Kremer, F. Length scale of cooperativity in the dynamic glass transition. Phys. Rev. Lett. 79, 2077–2080 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Skipper, N. T., Soper, A. K. & McConnell, D. C. The structure of interlayer water in vermiculite. J. Chem. Phys. 94, 5751– 5760 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Olejnic, S. & White, J. W. Thin layers of water in vermiculites and monmorillonites-modification of water diffusion. Nature 236, 15–16 (1972).

    Article  ADS  Google Scholar 

  19. Hunter, R. J., Stirling, G. C. & White, J. W. Water dynamics in clays by neutron spectroscopy. Nature 230, 192–194 (1971).

    ADS  CAS  Google Scholar 

  20. Tuck, J. J., Hall, P. L., Hayes, M. H. B., Ross, D. K. & Poinsignon, C. Quasi-elastic neutron-scattering studies of the dynamics of intercalated molecules in charge-deficient layer silicates. J. Chem. Soc., Faraday Trans. 80, 309–324 (1984).

    Article  CAS  Google Scholar 

  21. Swenson, J., Bergman, R. & Howells, W. S. Quasi-elastic neutron scattering of 2D-water in a vermiculite clay. J. Chem. Phys. (submitted).

  22. Okada, K., Yao, M., Hiejima, Y., Kohno, H. & Kajihara, Y. Dielectric relaxation of water and heavy water in the whole fluid phase. J. Chem. Phys. 110, 3026 –3036 (1999).

    Article  ADS  CAS  Google Scholar 

  23. Mizoguchi, K., Ujike, T. & Tominaga, Y. Dynamical structure of water in NaCl aqueous solution. J. Chem. Phys. 109, 1867– 1872 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Jonscher, A. K. Low-frequency dispersion in carrier-dominated dielectrics. Phil. Mag. B 38, 587–601 ( 1978).

    Article  ADS  CAS  Google Scholar 

  25. Jeevanandam, P. & Vasudevan, S. Anomalous low frequency dispersion and dielectric relaxation in the layered intercalated compounds Cd0.75PS3A0.5(H2O) [A=K, Cs]. J. Chem. Phys. 108, 1206– 1215 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Rønne, C., Åstrand, P.-O. & Keiding, S. R. THz spectroscopy of liquid H2O and D 2O. Phys. Rev. Lett. 82, 2888– 2891 (1999).

    Article  ADS  Google Scholar 

  27. Bjerrum, N. Structure and properties of ice. Science 115, 385–390 (1952).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Böhmer, R., Ngai, K. L., Angell, C. A. & Plazek, D. J. Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99, 4201–4209 (1993).

    Article  ADS  Google Scholar 

  29. Johari, G. P. Water's character from dielectric relaxation above its Tg. J. Chem. Phys. 105, 7079–7082 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. A. Angell and L. Börjesson for discussions; M. V. Smalley for providing the vermiculite clay samples; and P. Jacobsson for discussions and the use of dielectric spectrometer equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bergman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergman, R., Swenson, J. Dynamics of supercooled water in confined geometry. Nature 403, 283–286 (2000). https://doi.org/10.1038/35002027

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35002027

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing