Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Decoherence of quantum superpositions through coupling to engineered reservoirs

Abstract

The theory of quantum mechanics applies to closed systems. In such ideal situations, a single atom can, for example, exist simultaneously in a superposition of two different spatial locations. In contrast, real systems always interact with their environment, with the consequence that macroscopic quantum superpositions (as illustrated by the ‘Schrödinger's cat’ thought-experiment) are not observed. Moreover, macroscopic superpositions decay so quickly that even the dynamics of decoherence cannot be observed. However, mesoscopic systems offer the possibility of observing the decoherence of such quantum superpositions. Here we present measurements of the decoherence of superposed motional states of a single trapped atom. Decoherence is induced by coupling the atom to engineered reservoirs, in which the coupling and state of the environment are controllable. We perform three experiments, finding that the decoherence rate scales with the square of a quantity describing the amplitude of the superposition state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The decoherence of ‘Schrödinger-cat’ states coupled to an amplitude reservoir.
Figure 2: Decoherence of superpositions of Fock states coupled to the phase reservoir.
Figure 3: Implementation of an engineered zero-temperature reservoir.
Figure 4: Decoherence of a Fock state superposition into the engineered zero-temperature reservoir.

Similar content being viewed by others

References

  1. Dirac, P. A. M. The Principles of Quantum Mechanics (Oxford Univ. Press, Clarendon, 1958).

    Book  Google Scholar 

  2. Schrödinger, E. Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23, 807–812, 823–828, 844–849 (1935).

    Article  ADS  Google Scholar 

  3. Zurek, W. H. Decoherence and the transition from quantum to classical. Phys. Today 44, 36–44 ( 1991).

    Article  Google Scholar 

  4. Walls, D. F. & Milburn, G. J. Quantum Optics (Springer, Berlin, 1994).

    Book  Google Scholar 

  5. Bužek, V. & Knight, P. L. Quantum interference, superposition states of light, and nonclassical effects. Prog. Opt. XXXIV, 1–158 ( 1995).

    Google Scholar 

  6. Monroe, C., Meekhof, D. M., King, B. E. & Wineland, D. J. A “Schrödinger cat” superposition state of an atom. Science 272, 1131–1136 ( 1996).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  7. Brune, M. et al. Observing the progressive decoherence of the “meter” in a quantum measurement. Phys. Rev. Lett. 77, 4887–4890 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Poyatos, J. F., Cirac, J. I. & Zoller, P. Quantum reservoir engineering with laser cooled trapped ions. Phys. Rev. Lett. 77, 4728– 4731 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Marzoli, I., Cirac, J. I., Blatt, R. & Zoller, P. Laser cooling of trapped three-level ions: designing two-level systems for sideband cooling. Phys. Rev. A 49, 2771– 2779 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Caldeira, A. O. & Leggett, A. J. Influence of damping on quantum interference: an exactly soluble model. Phys. Rev. A 31, 1059–1066 ( 1985).

    Article  ADS  CAS  Google Scholar 

  11. Walls, D. F. & Milburn, G. J. Effect of dissipation on quantum coherence. Phys. Rev. A 31, 2403– 2408 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Collett, M. J. Exact density-matrix calculations for simple open systems. Phys. Rev. A 38, 2233–2247 ( 1988).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  13. Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulations of trapped atomic ions. J. Res. NIST 103, 259–328 (1998).

    Article  CAS  Google Scholar 

  14. Schneider, S. & Milburn, G. J. Decoherence in ion traps due to laser intensity and phase fluctuations. Phys. Rev. A 57, 3748–3752 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Murao, M. & Knight, P. L. Decoherence in nonclassical motional states of a trapped ion. Phys. Rev. A 58, 663–669 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Schneider, S. & Milburn, G. J. Decoherence and fidelity in ion traps with fluctuating trap parameters. Phys. Rev. A 59, 3766–3774 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Glauber, R. J. Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 ( 1963).

    Article  ADS  MathSciNet  Google Scholar 

  18. Raizen, M. G., Gilligan, J. M., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Ionic crystals in a linear Paul trap. Phys. Rev. A 45, 6493– 6501 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Monroe, C. et al. Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75, 4011–4014 (1995).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  20. Meekhof, D. M., Monroe, C., King, B. E., Itano, W. M. & Wineland, D. J. Generation of nonclassical motional states of a trapped atom. Phys. Rev. Lett. 76, 1796– 1799 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Myatt, C. J. et al. in Laser Spectroscopy 13 (ed. Blatt, R., Eschner, J., Leibfried, D. & Schmidt-Kaler, F.) (World Scientific, Singapore, in the press).

  22. Raimond, J. M., Brune, M. & Haroche, S. Reversible decoherence of a mesoscopic superposition of field states. Phys. Rev. Lett. 79, 1964 –1967 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Wilkinson, S. R. et al. Experimental evidence for non-exponential decay in quantum tunnelling. Nature 387, 575– 577 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Thompson, R. C., Hernandez-Pozos, J.-L., Höffges, J., Segal, D. M. & Vincent, J. R. in Trapped Charged Particles and Fundamental Physics (eds Dubin, D. H. E. & Schneider, D.) 388–392 (American Institute of Physics Conf. Proc. 457, AIP Press, Woodbury, New York, 1999 ).

    Google Scholar 

  25. Itano, W. M., Heizen, D. J., Bollinger, J. J. & Wineland, D. J. Quantum Zeno effect. Phys. Rev. A 41, 2295 –2300 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Chapman, M. S. et al. Photon scattering from atoms in an interferometer: coherence lost and regained. Phys. Rev. Lett. 75, 3783–3787 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Dürr, S., Nonn, T. & Rempe, G. Fringe visibility and which-way information in an atom interferometer. Phys. Rev. Lett. 81, 5705–5709 (1998).

    Article  ADS  Google Scholar 

  28. Itano, W. M. et al. Quantum harmonic oscillator state synthesis and analysis. Proc. SPIE 2995, 43–55 (1997).

    Article  ADS  CAS  Google Scholar 

  29. de Matos Filho, R. L. & Vogel, W. Even and odd coherent states of the motion of a trapped ion. Phys. Rev. Lett. 76, 608–611 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Garraway, B. M., Knight, P. L. & Plenio, M. B. Generation and preservation of coherence in dissipative quantum optical environments. Phys. Scr. T76, 152–158 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the US National Security Agency, Army Research Office, and Office of Naval Research for support. We thank P. Zoller, H. Mabuchi and W. Zurek for discussions. We thank them, D. Leibfried, M. Rowe, D. Sullivan and M. Lombardi for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Wineland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myatt, C., King, B., Turchette, Q. et al. Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature 403, 269–273 (2000). https://doi.org/10.1038/35002001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35002001

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing