Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interaction between Wnt and TGF-β signalling pathways during formation of Spemann's organizer

Abstract

Members of the Wnt and TGF-β superfamilies regulate both cell fate and proliferation during development and tissue maintenance1,2,3. In the early amphibian embryo, the Wnt and TGF-β superfamily signalling cascades are required for the establishment of a dorsal signalling centre, Spemann's organizer4,5,6,7,8. Intracellular proteins of both pathways, upon activation, translocate to the nucleus to participate in transcription. Here we show that β-catenin and Lef1/Tcf, which are downstream components of the Wnt signalling cascade, form a complex with Smad4, an essential mediator of signals initiated by members of the TGF-β growth factor superfamily. In Xenopus, this interaction directly and synergistically affects expression of the twin (Xtwn) gene during formation of the organizer. This is, to our knowledge, the first demonstration of a physical interaction between TGF-β and Wnt signalling components in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deletion analysis of Xtwn reporter genes.
Figure 2: Requirement of Smad4 for Xtwn induction.
Figure 3: Physical interaction and localization of Smad4, Lef1 and β-catenin.
Figure 4: Transcriptional regulation mediated by Smad4, Lef1 and β-catenin.

Similar content being viewed by others

References

  1. Cadigan, K. M. & Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev. 11, 3286– 3305 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Heldin, C. H., Miyazono, K. & ten Dijke, P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465– 471 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Massagué, J. TGF-β signal transduction. Annu. Rev. Biochem. 67, 753–791 (1998).

    Article  PubMed  Google Scholar 

  4. Harland, R. & Gerhart, J. Formation and function of Spemann's organizer. Annu. Rev. Cell Dev. Biol. 13, 611–667 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Brannon, M., Gomperts, M., Sumoy, L., Moon, R. T. & Kimelman, D. A β-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev. 11, 2359–2370 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moon, R. T. & Kimelman, D. From cortical rotation to organizer gene expression: toward a molecular explanation of axis specification in Xenopus. BioEssays 20, 536– 545 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Watabe, T. et al. Molecular mechanisms of Spemann's organizer formation: conserved growth factor synergy between Xenopus and mouse. Genes Dev. 9, 3038–3050 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  8. Laurent, M. N., Blitz, I. L., Hashimoto, C., Rothbacher, U. & Cho, K. W. The Xenopus homeobox gene twin mediates Wnt induction of goosecoid in establishment of Spemann's organizer. Development 124, 4905– 4916 (1997).

    CAS  PubMed  Google Scholar 

  9. Crease, D. J., Dyson, S. & Gurdon, J. B. Cooperation between the activin and Wnt pathways in the spatial control of organizer gene expression. Proc. Natl Acad. Sci. USA 95, 4398–4403 ( 1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Candia, A. F. et al. Cellular interpretation of multiple TGF-β signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads. Development 124, 4467–4480 (1997).

    CAS  PubMed  Google Scholar 

  11. Lagna, G., Hata, A., Hemmati-Brivanlou, A. & Massagué, J. Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways. Nature 383, 832–836 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Hoodless, P. A. et al. Dominant-negative Smad2 mutants inhibit activin/Vg1 signaling and disrupt axis formation in Xenopus. Dev. Biol. 207, 364–379 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Shi, Y. et al. Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-β signaling. Cell 94, 585–594 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Yost, C. et al. The axis-inducing activity, stability, and subcellular distribution of β-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 10, 1443– 1454 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Waterman, M. L. & Jones, K. A. Purification of TCF-1α, a T-cell-specific transcription factor that activates the T-cell receptor Cα gene enhancer in a context-dependent manner. New Biol. 2, 621–636 ( 1990).

    CAS  PubMed  Google Scholar 

  16. Fujita, T., Nolan, G. P., Liou, H. C., Scott, M. L. & Baltimore, D. The candidate proto-oncogene bcl-3 encodes a transcriptional coactivator that activates through NF-kappa B p50 homodimers. Genes Dev. 7, 1354–1363 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. McKendry, R., Hsu, S. C., Harland, R. M. & Grosschedl, R. LEF-1/TCF proteins mediate wnt-inducible transcription from the Xenopus nodal-related 3 promoter. Dev. Biol. 192, 420– 431 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. He, T. C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 ( 1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Tetsu, O. & McCormick, F. β-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Christian, J. L. & Moon, R. T. Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes Dev. 7, 13–28 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Jones, C. M., Lyons, K. M., Lapan, P. M., Wright, C. V. & Hogan, B. L. DVR-4 (bone morphogenetic protein-4) as a posterior-ventralizing factor in Xenopus mesoderm induction. Development 115, 639–647 (1992).

    CAS  PubMed  Google Scholar 

  22. Hoppler, S. & Moon, R. T. BMP-2/-4 and Wnt-8 cooperatively pattern the Xenopus mesoderm. Mech. Dev. 71, 119–129 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Riese, J. et al. LEF-1, a nuclear factor coordinating signaling inputs from wingless and decapentaplegic. Cell 88, 777– 787 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Theisen, H., Haerry, T. E., O'Connor, M. B. & Marsh, J. L. Developmental territories created by mutual antagonism between Wingless and Decapentaplegic. Development 122, 3939– 3948 (1996).

    CAS  PubMed  Google Scholar 

  25. Brook, W. J. & Cohen, S. M. Antagonistic interactions between wingless and decapentaplegic responsible for dorsal–ventral pattern in the Drosophila leg. Science 273, 1373–1377 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Wisotzkey, R. G. et al. Medea is a Drosophila Smad4 homolog that is differentially required to potentiate DPP responses. Development 125 , 1433–1445 (1998).

    CAS  PubMed  Google Scholar 

  27. Takaku, K. et al. Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 92, 645– 656 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Cho, K. W., Blumberg, B., Steinbeisser, H. & De Robertis, E. M. Molecular nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid. Cell 67, 1111– 1120 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Larabell, C. A. et al. Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in β-catenin that are modulated by the Wnt signaling pathway. J. Cell. Biol. 136, 1123–1136 (1997).

Download references

Acknowledgements

We thank I. Blitz, M. Waterman and K. Matsumoto for their critical reading of the manuscript and helpful comments; S. Nagai, Y. Takahashi and C. Nugas for assistance; R. Moon, P. ten Dijke, R. Derynck, L. Attisano, O. Tetsu, F. McCormick, J. Thomsen, T. Akiyama, M. Prieve and T. Li for reagents; and L. Raftery for discussion. This work was supported by an NIH grant and by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan and ‘Research for the Future’ program of the Japan Society for the promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken W. Y. Cho.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishita, M., Hashimoto, M., Ogata, S. et al. Interaction between Wnt and TGF-β signalling pathways during formation of Spemann's organizer. Nature 403, 781–785 (2000). https://doi.org/10.1038/35001602

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35001602

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing