Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

New measurement of solar gravitational deflection of radio signals using VLBI

Abstract

RADIO observations using very-long-baseline interferometry (VLBI) can measure the deflection of electromagnetic radiation by the Sun's gravitational field with an accuracy of better than 1 milliarcsecond, and can thus be used to test General Relativity. For an object at an angle a from the centre of the Sun, the expected deflection is1 (1 + γ) (Ms/re)((l + cos α)/(l-cos α))1/2, where Ms is the mass of the Sun in geometrized units2 (1.477 × 105 cm), re is the distance from the Earth to the Sun in cm, and y is a parameter whose value is 1 if General Relativity is correct but which takes on different values in other theories of gravity. For γ = 1, the deflection is 1,750 mas at the Sun's limb, 4 mas at α =90° and 0 at α = 180°. Our analysis of ten years of VLBI data, including observations of objects in the range 2.5° < a< 178°, yields an estimate γ = 1.0002 with a formal standard error of 0.00096 and an estimated standard error of 0.002. This determination is comparable in accuracy and in good agreement with the determination from Mars–Viking time-delay measurements3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Misner, C. W. et al. Gravitation 1103 (Freeman, San Francisco, 1973).

    Google Scholar 

  2. Misner, C. W. et al. Gravitation 36 (Freeman, San Francisco, 1973).

    Google Scholar 

  3. Reasenberg, R. D. et al. Astrophys J. 234, L219–L221, (1979).

    Article  ADS  Google Scholar 

  4. Shapiro, I. I. Science 157, 806–808 (1967).

    Article  ADS  CAS  Google Scholar 

  5. Shapiro, I. I. & Knight, C. A. in Earthquake Displacement Fields and the Rotation of the Earth (eds Mansinha, L., Smylie, D. E. & Beck, A. E.) 285–301 (Reidel, Dordrecht, 1970).

    Google Scholar 

  6. Carter, W. E. et al. J. geophys. Res. 90, 4577–4587 (1985).

    Article  ADS  Google Scholar 

  7. Coates, R. J. et al. IEEE Trans. Geosci. Remote Sens. GE23, No. 4, 360–368 (1985).

    Article  ADS  Google Scholar 

  8. Rogers, A. E. E. et al. Science 219, 51–54 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Robertson, D. S. & Carter, W. E. Nature 310, 572–574 (1984).

    Article  ADS  Google Scholar 

  10. Shapiro, I. I. Relativistic Corrections to the Delay Observable Int. Memo. 1–24 (Harvard/Smithsonian Center for Astrophysics, Cambridge, 1983).

    Google Scholar 

  11. Shapiro, I. I. Relativistic Delay of Signal from Source Due to Gravitational Potential of the Earth Int. Memo. 3–1 (Harvard/Smithsonian Center for Astrophysics, Cambridge, 1983).

    Google Scholar 

  12. Herring, T. A. General Relativity Delay Expression Int. Memo. 1–30 (Harvard/Smithsonian Center for Astrophysics, Cambridge, 1989).

    Google Scholar 

  13. Ryan, J. CALC-7.0 Release Document Internal Memo 12–16 (NASA Goddard Space Flight Center, Greenbelt, 1989).

    Google Scholar 

  14. Hellings, R. W. Astr. J. 91, 650–659 (1986); Erratum Astr. J. 92, 1446 (1986).

    Article  ADS  Google Scholar 

  15. Robertson, D. S. et al. Science 229, 1259–1261 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Biretta, J. A. et al. Astrophys. J. 292, L5–L8 (1985).

    Article  ADS  Google Scholar 

  17. Unwin, S. C. et al. Astrophys J. 289, 109–119 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Cohen, M. H. et al. Astrophys. J. 315, L89–L92 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Charlot, P. et al. in Proc. IAU Symp. No. 129 (eds Reid, M. J. & Moran, J. M.) 33–34 (Kluwer, Dordrecht, 1988).

  20. Kawaguchi, N. & Takahashi, Y. in Proc. IAU Symp. No. 129 (eds Reid, M. J. & Moran, J. M.) 45–46 (Kluwer, Dordrecht, 1988).

  21. McCarthy, D. D. (ed.) IERS Standards IERS tech. Note 3, International Earth Orientation Service (Observatoire de Paris, Paris, 1989).

  22. Rabbel, W. & Zschau, J. J. Geophys. 56, 81–89 (1985).

    Google Scholar 

  23. Van Dam, T. M. & Wahr, J. M. J. geophys. Res. 92, 1281–1286 (1987).

    Article  ADS  Google Scholar 

  24. Davis, J. L. et al. Radio Sci. 20, 1593–1607 (1985).

    Article  ADS  Google Scholar 

  25. Davis, J. L. et al. in Proc. IAU Symp. No. 129 (eds Reid, M. J. & Moran, J. M.) 367–368 (Reidel, Dordrecht, 1988).

  26. Carter, W. E. et al. J. geophys. Res. 93, 14947–14953 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robertson, D., Carter, W. & Dillinger, W. New measurement of solar gravitational deflection of radio signals using VLBI. Nature 349, 768–770 (1991). https://doi.org/10.1038/349768a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349768a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing