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LETTERS TO NATURE 

decrease in the Cu(II) EPR signal, can be attributed to inter­
or intramolecular disproportionation, that is 2 Cu(r)­
Q ~ Cu(r)-Qrect + Cu(r)-Q0 x, using the notation of Fig. 3. 
Copper reduction by substrates was confirmed by circular 
dichroism (CD) spectroscopy. The Cu(II) ligand-field transi­
tions of pea seedling diamine oxidase and Arthrobacter methyl­
amine oxidase are observed in the CD spectra from 600 to 
800 nm (ref. 10, and D.M.D., unpublished observations), where 
the quinone makes no contribution. Fully reduced amine oxi­
dases display no CD bands in this region. Substrate addition 
under anaerobic conditions produces a 35% decrease in the 
intensity of the methylamine oxidase Cu(II) CD bands (Fig. 
4a), consistent with the EPR results. 

The EPR data in Figs 1 and 2 establish that amine oxidase 
Cu(r)-semiquinones can be generated under conditions that are 
biologically relevant, in the absence of trapping agents. This 
permits the development of a plausible mechanism (Fig. 3) 
featuring well-precedented roles for both copper and the quin­
one, which circumvents the well-known spin conservation prob­
lem associated with two-electron reductions of oxygen18

• 

Evidence for a bound superoxide intermediate has been pre­
viously described19

•
20

• Further, for an amine oxidase isolated 
from lentil seedlings, Finazzi-Agro and co-workers have shown 
that a substrate-reduced species with absorption bands at 464, 
432 and 360 nm (similar to B in Fig. 4b) is a catalytic intermedi­
ate and reacts very rapidly with oxygen21

• By correlating the 
room-temperature EPR and absorption spectra, this intermedi­
ate can plausibly be assigned as the Cu(r)-semiquinone. 

Why has the Cu(r)-semiquinone state of amine oxidases been 
so elusive? The results in Fig. 4b provide a clue. Anaerobic 
addition of substrate to methylamine oxidase produces the 
characteristic semiquinone absorption bands; cooling, without 
freezing, the enzyme solution bleaches the absorption spectrum 
and produces a spectrum that represents a mixture of the fully 
reduced and oxidized quinones. The process is reversible 
because the semiquinone bands are recovered upon warming 
the solution to 22 °C. Cyanide prevents the bleaching of the 
semiquinone spectrum on cooling, probably by stabilizing Cu(r) 
and preventing back electron-transfer, thereby allowing the 
semiquinone to be observed even at low temperature. Collec­
tively, the results suggest that the Cu(r)-semiquinone and the 
Cu(II)-reduced quinone are in equilibrium, and that low tem­
peratures favour the Cu( II) form. Similar effects might be present 
in other enzymes containing multiple redox centres where 
intramolecular electron-transfer steps are involved in the 
mechanism. D 
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ERRATUM 

Anticrack-associated faulting at 
very high pressure in 
natural olivine 
Harry W. Green II, Thomas E. Young, David Walker 
& Christopher H. Scholz 

Nature 348, 720-722 (1990) 

IN this letter in the 20/27 December issue, the legend to Fig. 1 
should read: 

FIG.1 Low-magnification photomicrograph in obliquely incident light showing 
a fault traversing specimen 36. The specimen was shortened in approxi­
mately the E-W direction. Bright areas on the edges of the specimen are 
remnants of the rhenium heater. Vertical dimension of specimen is 3 mm. 

The printed version referred incorrectly to the 'N-S direction' 
and the horizontal dimension. 

CORRECTION 

Weak-link-free behaviour of 
high-angle YBa2Cu307-o grain 
boundaries in high magnetic fields 
S. E. Babcock, X. Y. Cai, D. L. Kaiser 
& D. C. Larbalestier 

Nature 347, 167-169 (1990) 

THE expression used to calculate Jc values throughout the above 
paper was misquoted in the paper (bottom of left side, page 
332) as Jc=!!,.M/(2r). The correct expression is Jc=3/!,.M/r. 
The correct expression was used for all the calculations which 
appear in the text and figures. 
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