Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In vitro effects on microtubule dynamics of purified Xenopus M phase-activated MAP kinase

Abstract

THE protein kinase MAP kinase, also called MAP2 kinase, is a serine/threonine kinase whose activation and phosphorylation are induced by a variety of mitogens1–6, and which is thought to have a critical role in a network of protein kinases in mitogenic signal transduction1–7. A burst in kinase activation8,9and protein phosphorylation10 may also be important in triggering the dramatic reorganization of the cell during the transition from interphase to mitosis. The interphase–metaphase transition of microtubule arrays is under the control of p34cdc2 kinase11, a central control element in the G2–M transition of the cell cycle12. Here we show that a Xenopus kinase, closely related to the mitogen-activated mammalian MAP kinase, is phosphorylated and activated during M phase of meiotic and mitotic cell cycles, and that the interphase–metaphase transition of microtubule arrays can be induced by the addition of purified Xenopus M phase-activated MAP kinase or mammalian mitogen-activated MAP kinase to interphase extracts in vitro.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ray, L. B. & Sturgill, T. W. Proc. natn. Acad. Sci. U.S.A. 84, 1502–1506 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Hoshi, M., Nishida, E. & Sakai, H. J. biol. Chem. 263, 5396–5401 (1988).

    CAS  Google Scholar 

  3. Ray, L. B. & Sturgill, T. W. J. biol. Chem. 263, 12721–12727 (1988).

    CAS  Google Scholar 

  4. Hoshi, M., Nishida, E. & Sakai, H. Eur. J. Biochem. 184, 477–486 (1989).

    Article  CAS  Google Scholar 

  5. Rossomando, A. J., Payne, D. M., Weber, M. J. & Sturgill, T. W. Proc. natn. Acad. Sci. U.S.A. 86, 6940–6943 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Gotoh, Y., Nishida, E. & Sakai, H. Eur. J. Biochem. 193, 671–674 (1990).

    Article  CAS  Google Scholar 

  7. Sturgill, T. W., Ray, L. B., Erikson, E. & Maller, J. L. Nature 334, 715–718 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Cicirelli, M. F., Pelech, S. L. & Krebs, E. G. J. biol. Chem. 263, 2009–2019 (1988).

    CAS  PubMed  Google Scholar 

  9. Sanghera, J. S., Paddon, H. B., Bader, S. A. & Pelech, S. L. J. biol. Chem. 265, 52–57 (1990).

    CAS  PubMed  Google Scholar 

  10. Maller, J. L., Wu, M. & Gerhart, J. C. Devl Biol. 58, 295–312 (1977).

    Article  CAS  Google Scholar 

  11. Verde, F., Labbe, J.-C., Doree, M. & Karsenti, E. Nature 343, 233–238 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Nurse, P. Nature 344, 503–508 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Anderson, N. G., Mailer, J. L., Tonks, N. K. & Sturgill, T. W. Nature 343, 651–653 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Boulton, T. G. et al. Science 249, 64–67 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Cooper, J. A. Molec. cell. Biol. 9, 3143–3147 (1989).

    Article  CAS  Google Scholar 

  16. Gard, D. L. & Kirschner, M. W. J. Cell Biol. 105, 2191–2201 (1987).

    Article  CAS  Google Scholar 

  17. Erikson, E. & Maller, J. L. J. biol. Chem. 264, 13711–13717 (1989).

    CAS  PubMed  Google Scholar 

  18. Kase, H. et al. Biochem. biophys. Res. Commun. 142, 436–440 (1987).

    Article  CAS  Google Scholar 

  19. Tamaoki, T. et al. Biochem. biophys. Res. Commun. 135, 397–402 (1986).

    Article  CAS  Google Scholar 

  20. Gotoh, Y. et al. Eur. J. Biochem. 193, 661–669 (1990).

    Article  CAS  Google Scholar 

  21. Kameshita, I. & Fujisawa, H. Analyt. Biochem. 183, 139–143 (1989).

    Article  CAS  Google Scholar 

  22. Stith, B. J. & Maller, J. L. Devl Biol. 102, 79–89 (1984).

    Article  CAS  Google Scholar 

  23. Karsenti, E., Newport, J., Hubble, R. & Kirschner, M. J. Cell Biol. 98, 1730–1745 (1984).

    Article  CAS  Google Scholar 

  24. Lohka, M. J. & Maller, J. L. J. Cell Biol. 101, 518–523 (1985).

    Article  CAS  Google Scholar 

  25. Felix, M.-A., Pines, J., Hunt, T. & Karsenti, E. EMB0 J. 8, 3059–3069 (1989).

    Article  CAS  Google Scholar 

  26. Mitchison, T. & Kirschner, M. Nature 312, 232–237 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gotoh, Y., Nishida, E., Matsuda, S. et al. In vitro effects on microtubule dynamics of purified Xenopus M phase-activated MAP kinase. Nature 349, 251–254 (1991). https://doi.org/10.1038/349251a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349251a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing