Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large amounts of extinct26AI in interstellar grains from the Murchison meteorite

Abstract

INTERSTELLAR graphite and silicon carbide grains recovered from the Murchison CM2 chondritic meteorite are known to show large anomalies in the isotopic abundances of neon, xenon, carbon, nitrogen and silicon1–3. These anomalies provide clues to the nucleosynthetic origin of the material from which the grains formed. Here we report that both types of grain also have large abundances of 26Mg from the decay of extinct 26A1 (half-life 705,000 years). The deduced initial 26Al/27Al ratios range up to 0.06 in graphite and 0.2 in Si C—1,200 and 4,000 times the maximum values found in refractory inclusions in primitive meteorites. All proposed stellar sources of carbonaceous dust (red giants, novae, Wolf–Rayet stars and supernovae) also produce 26Al, but the highest 26Al/27A1 ratios found in these grains seem to rule out Wolf-Rayet stars and supernovae. The aluminium abundance correlates with that of nitrogen, suggesting that the aluminium condensed as aluminium nitride.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tang, M. & Anders, E. Geochim. cosmochim. Acta 52, 1235–1244 (1988).

    Article  ADS  Google Scholar 

  2. Amari, S., Anders, E., Virag, A. & Zinner, E. Nature 345, 238–240 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Zinner, E., Tang, M. & Anders, E. Geochim. cosmochim. Acta 53, 3273–3290 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Lewis, R. S., Amari, S. & Anders, E. Nature 348, 293–298 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Wopenka, B. et al. Meteoritics 24, 342 (1989).

    Google Scholar 

  6. Amari, S., Lewis, R. S. & Anders, E. Lunar planet Sci. 21, 19–20 (1990).

    ADS  Google Scholar 

  7. Amari, S., Zinner, E. & Lewis, R. S. Meteoritics (in the press).

  8. Zinner, E., Wopenka, B., Amari, S. & Anders, E. Lunar Planet Sci. 21, 1379–1380 (1990).

    ADS  Google Scholar 

  9. Lattimer, J. M., Schramm, D. N. & Grossman, L. Astrophys. J. 219, 230–247 (1978).

    Article  ADS  CAS  Google Scholar 

  10. Catanzaro, E. J., Murphy, T. J., Garner, E. L. & Shields, W. R. J. Res. Nat. Bur. Stand. 70a, 453–458 (1966).

    Article  CAS  Google Scholar 

  11. Czyzak, S. J., Hirth, J. P. & Tabak, R. G. Vistas Astr. 25, 337–382 (1982).

    Article  ADS  Google Scholar 

  12. Nuth, J. A. Nature 318, 166–168 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Frenklach, M., Carmer, C. S. & Feigelson, E. D. Nature 339, 196–198 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Wasserburg, G. J. & Papanastassiou, D. A. in Essays in Nuclear Astrophysics (eds Barnes, C. A., Clayton, D. D. & Schramm, D. N.) 77–140 (Cambridge Univ. Press, 1982).

    Google Scholar 

  15. Clayton, D. D. Nature 257, 36–37 (1975).

    Article  ADS  CAS  Google Scholar 

  16. Tielens, A. G. G. M. in Carbon in the Galaxy, Rep. NASA CP-3061 (eds Tarter, J. C., Chang, S. & DeFrees, D. J.) (NASA, Washington, DC, 1990).

  17. Nørgaard, H. Astrophys. J. 236, 895–898 (1980).

    Article  ADS  Google Scholar 

  18. Cameron, A. G. W. lcarus 60, 416–427 (1984).

    ADS  CAS  Google Scholar 

  19. Dearborn, D. S. P. & Blake, J. B. Astrophys. J. 288, L21–L24 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Prantzos, N. & Cassé, M. Astrophys. J. 307, 324–331 (1986).

    Article  ADS  CAS  Google Scholar 

  21. Clayton, D. D. Astrophys. J. 280, 144–149 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Arnould, M. in Proc. Accelerated Radioactive Beams Workshop, Rep. TRt-85-1 (eds Buchmann, L. & D'Auria, J.) 29 (TRIUMF, 1985).

  23. Woosley, S. E. & Hoffman, R. D. in Nucleosynthesis and Chemical Evolution (eds Hauck, B., Maeder, A. & Meynet, G.) 60–68 (Observatoire de Genève, 1986).

    Google Scholar 

  24. Arnett, W. D. & Wefel, J. P. Astrophys. J. 224, L139–L142 (1978).

    Article  ADS  CAS  Google Scholar 

  25. Truran, J. W. & Camerorr, A. G. W. Astrophys. J. 219, 226–229 (1978).

    Article  ADS  CAS  Google Scholar 

  26. Woosley, S. E. & Weaver, T. A. in Nucleosynthesis and its Implications on Nuclear and Particle Physics (eds Audouze, J. & Mathieu, N.) 145–166 (Reidel, Dordrecht, 1986).

    Book  Google Scholar 

  27. Gehrz, R. D. in Interstellar Dust (eds Allamandola, L. J. & Tielens, A. G. G. M.) 445–453 (Kluwer, Dordrecht, 1989).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zinner, E., Amari, S., Anders, E. et al. Large amounts of extinct26AI in interstellar grains from the Murchison meteorite. Nature 349, 51–54 (1991). https://doi.org/10.1038/349051a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349051a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing