Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Caenorhabditis elegans ras gene let-60 acts as a switch in the pathway of vulval induction

Abstract

The let-60 gene, an essential ras gene of the nematode Caenorhabditis elegans, acts as a switch in the inductive signalling pathway that initiates vulva formation. Recessive let-60 mutations that cause a vulvaless phenotype prevent let-60 function in response to the inductive signal. These mutations are clustered and define regions necessary either for the activation or for the action of the let-60 ras protein. Dominant let-60 mutations that cause a multivulva phenotype alter codon 13 and activate let-60 in vivo, rendering it independent of the inductive signal. The let-60 gene acts within an extensively defined genetic pathway, and other genes within this pathway seem likely to encode molecules that regulate let-60 function as well as molecules that are targets of let-60 action.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sulston, J. E. & Horvitz, H. R. Devl Biol. 56, 110–156 (1977).

    Article  CAS  Google Scholar 

  2. Sulston, J. E. & White, J. G. Devl Biol. 78, 577–597 (1980).

    Article  CAS  Google Scholar 

  3. Sternberg, P. W. & Horvitz, H. R. Cell 44, 761–772 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Sternberg, P. W. Nature 335, 551–554 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Sternberg, P. W. & Horvitz, H. R. Cell 58, 679–693 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Herman, R. K. & Hedgecock, E. M. Nature 348, 169–171 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Ferguson, E. L. & Horvitz, H. R. Genetics 110, 17–72 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ferguson, E. L. & Horvitz, H. R. Genetics 123, 109–121 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ferguson, E. L., Sternberg, P. W. & Horvitz, H. R. Nature 326, 259–267 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Rogalski, T. M., Moerman, D. G. & Baillie, D. L. Genetics 102, 725–736 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Han, M. & Sternberg, P. W. Cell (in the press).

  12. Barbacid, M. A. Rev. Biochem. 56, 779–827 (1987).

    Article  CAS  Google Scholar 

  13. Toda, T. et al. Cell 40, 27–36 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Downward, J., Graves, J. D., Warne, P. H., Rayter, S. & Cantrell, D. A. Nature 346, 719–723 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Bos, J. L. et al. Nature 315, 726–730 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Willumsen, B. M. et al. Molec. cell. Biol. 6, 2646–2654 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sigal, I. S., Gibbs, J. B., DaLonzo, J. S. & Scolnick, E. M. Proc. natn. Acad. Sci. U.S.A. 83, 4725–4729 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Clark, D. V., Rogalski, T. M., Donati, L. M. & Baillie, D. L. Genetics 119, 345–353 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kimble, J. Devl Biol. 87, 286–300 (1981).

    Article  CAS  Google Scholar 

  20. Sternberg, P. W. Trends Neurosci. 11, 259–264 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Han, M., Aroian, R. & Sternberg, P. W. Genetics (in the press).

  22. Avery, L. & Horvitz, H. R. Cell 51, 1071–1078 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Prakash, L. & Sherman, F. J. molec. Biol. 79, 65–82 (1973).

    Article  CAS  PubMed  Google Scholar 

  24. Coulondre, C. & Miller, J. H. J. molec. Biol. 117, 525–567 (1977).

    Article  CAS  PubMed  Google Scholar 

  25. Zarbl, H., Sukumar, S., Arthur, A. V., Martin, Z. D. & Barbacid, M. Nature 315, 382–385 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Mount, S. M. Nucleic Acids Res. 10, 459–472 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Powers, S., O'Neil, K. & Wigler, M. Molec. cell. Biol. 9, 390–395 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Downward, J., Riehl, R., Wu, L. & Weinberg, R. A. Proc. natn. Acad. Sci. U.S.A. 87, 5998–6002 (1990).

    Article  ADS  CAS  Google Scholar 

  29. Wolfman, Z. & Macara, I. G. Science 248, 67–69 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Crechet, J. B. et al. Science 248, 866–868 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Milburn, M. V. et al. Science 247, 939–945 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Brenner, S. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Horvitz, H. R. & Sulston, J. E. Genetics 96, 435–454 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bolten, S. L., Powell, A. P., Fischhoff, D. A. & Waterston, R. H. Proc. natn. Acad. Sci. U.S.A. 81, 6784–6788 (1984).

    Article  ADS  CAS  Google Scholar 

  35. Moerman, D. G. & Baillie, D. L. Mutat. Res. 80, 273–279 (1981).

    Article  CAS  PubMed  Google Scholar 

  36. Waterston, R. H. Genetics 97, 307–325 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Greenwald, I. S. & Horvitz, H. R. Genetics 96, 147–164 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Capon, D. J., et al. Nature 304, 507–513 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. McCabe, P. C. in PCR Protocols (eds Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J.) 76–83 (Academic, San Diego, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beitel, G., Clark, S. & Horvitz, H. Caenorhabditis elegans ras gene let-60 acts as a switch in the pathway of vulval induction. Nature 348, 503–509 (1990). https://doi.org/10.1038/348503a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/348503a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing