Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The mitochondrial chaperonin hsp60 is required for its own assembly

Abstract

HEATSHOCK protein 60 (hsp60) in the matrix of mitochondria is essential for the folding and assembly of newly imported proteins1. Hsp60 belongs to a class of structurally related chaperonins found in organelles of endosymbiotic origin and in the bacterial cytosol2–9. Hsp60 monomers form a complex arranged as two stacked 7-mer rings6. This 14-mer complex binds unfolded proteins at its surface, then seems to catalyse their folding in an ATP-dependent process10. The question arises as to how such an assembly machinery is itself folded and assembled. Hsp60 subunits are encoded by a nuclear gene and translated in the cytosol as precursors7 which are translocated into mitochondria and proteolytically processed. In both intact cells and isolated mitochondria of the hsp60-defective yeast mutant mif4, self-assembly of newly imported wild-type subunits is not observed. Functional pre-existing hsp60 complex is required in order to form new, assembled, 14-mer. Subunits imported in vitro are assembled with a surprisingly fast half-time of 5–10 min, indicative of a catalysed reaction. These findings are further evidence that self-assembly may not be the principal mechanism by which proteins attain their functional conformation in the intact cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cheng, M. Y. et al. Nature 337, 620–625 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Laskey, R. A., Honda, B. M., Mills, A. D. & Finch, J. T. Nature 275, 416–420 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Ellis, R. J. & Hemmingsen, S. M. Trends biochem. Sci. 14, 339–342 (1989).

    Article  CAS  Google Scholar 

  4. Rothman, J. E. Cell 59, 591–601 (1989).

    Article  CAS  Google Scholar 

  5. Barraclough, R. & Ellis, R. J. Biochim. biophys. Acta 608, 19–31 (1980).

    Article  CAS  Google Scholar 

  6. McMullen, T. W. & Hallberg, R. L. Molec. cell. Biol. 8, 371–380 (1988).

    Article  Google Scholar 

  7. Reading, D. S., Hallberg, R. L. & Myers, A. M. Nature 337, 655–659 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Hemmingsen, S. M. et al. Nature 333, 330–334 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Goloubinoff, P., Christeller, J. T., Gatenby, A. A. & Lorimer, G. H. Nature 342, 884–889 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Ostermann, J., Horwich, A. L., Neupert, W. & Hartl, F.-U. Nature 341, 125–130 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Luck, D. J. L. J. Cell Biol. 24, 461–470 (1965).

    Article  CAS  Google Scholar 

  12. Hartl, F.-U. & Neupert, W. Science 247, 930–938 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  14. Cheng, M. Y. thesis, Yale Univ. (1990).

  15. Pelham, H. R. B. & Jackson, R. J. Eur. J. Biochem. 67, 247–256 (1976).

    Article  CAS  Google Scholar 

  16. Towbin, H., Staehelin, T. & Gordon, J. Proc. natn. Acad. Sci. U.S.A. 76, 4350–4354 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Musgrove, J. E., Johnson, R. A. & Ellis, R. J. Eur. J. Biochem. 163, 529–543 (1987).

    Article  CAS  Google Scholar 

  18. Bahr, G. F. & Zeitler, E. J. Cell Biol. 15, 489–501 (1962).

    Article  CAS  Google Scholar 

  19. Lissin, N. M., Venyaminoy, S. Y. & Girshovich, A. S. Nature 348, 339–342 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, M., Hartl, FU. & Norwich, A. The mitochondrial chaperonin hsp60 is required for its own assembly. Nature 348, 455–458 (1990). https://doi.org/10.1038/348455a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/348455a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing