Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

TATA-dependent and TATA-independent transcription at the HIS4 gene of yeast

Abstract

Two systems of transcription factors stimulate expression of the HIS4 gene of Saccharomyces cerevisiae. High-level transcription induced by amino-acid starvation is mediated by Gcn4 (ref. 1) and basal transcription is mediated jointly by the factors Bas1 and Bas2 (Pho2)2–4. We now show that wild-type Gcn4 requires the TATA element for correct messenger RNA start-site selection, but Gcn4 derivatives with deletions in the activation domain activate HIS4 transcription at the correct mRNA start site (I) in the absence of the TATA element. Gcn4 derivatives that activate TATA-independent transcription show low levels of activation. Similarly, we find that low levels of transcription by Basl/Bas2 are TATA-independent, whereas high levels are TATA-dependent. These results show that the HIS4 TATA element is required for mRNA start-site selection only under conditions of high-level transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hinnebusch, A. G. Microbiol. Rev. 52, 248–273 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Arndt, K. T., Styles, C. & Fink, G. R. Science 237, 874–880 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Tice, B. K., Fink, G. R. & Arndt, K. T. Science 246, 931–935 (1989).

    Article  ADS  Google Scholar 

  4. Sengstag, C. & Hinnen, A. Nucleic Acids Res. 15, 233–246 (1987).

    Article  CAS  Google Scholar 

  5. Nagawa, F. & Fink, G. R. Proc. natn. Acad. Sci. U.S.A. 82, 8557–8561 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Arndt, K. & Fink, G. R. Proc. natn. Acad. Sci. U.S.A. 83, 8516–8520 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Arndt, K. T., Styles, C. A. & Fink, G. R. Cell 56, 527–537 (1989).

    Article  CAS  Google Scholar 

  8. Hope, I. A. & Struhl, K. Cell 43, 177–188 (1985).

    Article  CAS  Google Scholar 

  9. Hope, I. A. & Struhl, K. Cell 46, 885–894 (1986).

    Article  CAS  Google Scholar 

  10. Hope, I. A., Mahadevan, S. & Struhl, K. Nature 333, 635–640 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Greene, J. M. & Kingston, R. E. Molec. cell. Biol. 10, 1319–1328 (1990).

    Article  CAS  Google Scholar 

  12. Taylor, I. C. & Kingston, R. E. Molec. cell. Biol. 10, 165–175 (1990).

    Article  CAS  Google Scholar 

  13. Wefald, F. C., Devlin, B. H. & Williams, R. S. Nature 344, 260–262 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Smale, S. T. & Baltimore, D. Cell 57, 103–113 (1989).

    Article  CAS  Google Scholar 

  15. Reynolds, G. et al. Cell 38, 275–286 (1984).

    Article  CAS  Google Scholar 

  16. Sehgal, A., Patil, N. & Chao, M. Molec. cell. Biol. 8, 3160–3167 (1988).

    Article  CAS  Google Scholar 

  17. Chen, W. & Struhl, K. EMBO J. 4, 3273–3280 (1985).

    Article  CAS  Google Scholar 

  18. McNeil, J. B. & Smith, M. Molec. cell. Biol. 5, 3545–3551 (1985).

    Article  CAS  Google Scholar 

  19. Smale, S. T., Schmidt, M. C., Berk, A. J. & Baltimore, D. Proc. natn. Acad. Sci. U.S.A. 87, 4509–4513 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Struhl, K. A. Rev. Biochem. 58, 1051–1077 (1989).

    Article  CAS  Google Scholar 

  21. Kaufer, N. F., Fried, H. M., Schwindinger, W. F., Jasin, M. & Warner, J. R. Nucleic Acids Res. 11, 3123–3135 (1983).

    Article  CAS  Google Scholar 

  22. Elion, E. A. & Warner, J. R. Cell 39, 663–673 (1984).

    Article  CAS  Google Scholar 

  23. Lillie, J. W., Green, M. & Green, M. R. Cell 46, 1043–1051 (1986).

    Article  CAS  Google Scholar 

  24. Hahn, S., Hoar, E. & Guarente, L. Proc. natn. Acad. Sci. U.S.A. 82, 8562–8566 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellman, D., McLaughlin, M. & Fink, G. TATA-dependent and TATA-independent transcription at the HIS4 gene of yeast. Nature 348, 82–85 (1990). https://doi.org/10.1038/348082a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/348082a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing