Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Folding transition in the DMA-binding domain of GCN4 on specific binding to DNA

Abstract

PROTEIN-DNA recognition is often mediated by a small domain containing a recognizable structural motif, such as the helix–turn–helix1 or the zinc-finger2. These motifs are compact structures that dock against the DNA double helix. Another DNA recognition motif, found in a highly conserved family of eukaryotic transcription factors including C/EPB, Fos, Jun and CREB, consists of a coiled-coil dimerization element—the leucine-zipper—and an adjoining basic region which mediates DNA binding3. Here we describe circular dichroism and 1NMR spectroscopic studies of another family member, the yeast transcriptional activator GCN44,5. The 58-residue DNA-binding domain of GCN4, GCN4-p, exhibits a concentration-dependent α-helical transition, in accord with previous studies of the dimerization properties of an isolated leucine-zipper peptide6. The GCN4-p dimer is 70% helical at 25 °C, implying that the basic region adjacent to the leucine zipper is largely unstructured in the absence of DNA. Strikingly, addition of DNA containing a GCN4 binding site (AP-1 site) increases the α-helix content of GNC4-p to at least 95%. Thus, the basic region acquires substantial α-helical structure when it binds to DNA. A similar folding transition is observed on GCN4-p binding to the related ATF/CREB site, which contains an additional central base pair. The accommodation of DNA target sites of different lengths clearly requires some flexibility in the GCN4 binding domain, despite its high α-helix content. Our results indicate that the GCN4 basic region is significantly unfolded at 25 °C and that its folded, α-helical conformation is stabilized by binding to DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pabo, C. O. & Sauer, R. T. A. Rev. Biochem. 53, 293–321 (1984).

    Article  CAS  Google Scholar 

  2. Klug, A. & Rhodes, D. Trends Biochem. Sci. 12, 464–467 (1987).

    Article  CAS  Google Scholar 

  3. Landschulz, W. H., Johnson, P. F. & McKnight, S. L. Science 243, 1681–1686 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Hope, I. A. & Struhl, K. Cell 43, 177–188 (1985).

    Article  CAS  Google Scholar 

  5. Hope, I. A. & Struhl, K. EMBO J. 6, 2781–2784 (1987).

    Article  CAS  Google Scholar 

  6. O'Shea, E. K., Rutkowski, R. & Kim, P. S. Science 243, 538–542 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Hope, I. A. & Struhl, K. Cell 46, 885–894 (1986).

    Article  CAS  Google Scholar 

  8. Oas, T. G., McIntosh, L. P., O'Shea, E. K., Dahlquist, F. W. & Kim, P. S. Biochemistry 29, 2891–2894 (1990).

    Article  CAS  Google Scholar 

  9. Kouzarides, T. & Ziff, E. Nature 340, 568–571 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Sellars, J. W. & Struhl, K. Nature 341, 74–76 (1989).

    Article  ADS  Google Scholar 

  11. Landschultz, W. H., Johnson, P. F. & McKnight, S. L. Science 246, 922–926 (1988).

    Google Scholar 

  12. Agre, P., Johnson, P. F. & McKnight, S. L. Scinece 246, 922–926 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Weiss, M. A. Biochemistry (in the press).

  14. Oliphant, A. R., Brandl, C. J. & Struhl, K. Molec. cell. Biol. 9, 2944–2949 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hai, T., Liu, F., Allegretto, E. A., Karin, M. & Green, M. R. Genes Dev. 2, 1216–1226 (1988).

    Article  CAS  Google Scholar 

  16. Sadler, J. R., Sasmor, H. & Betz, J. L. Proc. natn. Acad. Sci. U.S.A. 80, 6785–6789 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Arndt, K., Boschelli, F., Lu, P. & Miller, J. H. Biochemistry 20, 6109–6118 (1981).

    Article  CAS  Google Scholar 

  18. Buck, F., Ruterjans, H. & Beyreuther, K. FEBS Lett. 96, 335–338 (1978).

    Article  CAS  Google Scholar 

  19. Wade-Jardetzky, N. et al. J. molec. Biol. 128, 259–264 (1979).

    Article  CAS  Google Scholar 

  20. Vinson, C. R., Sigler, P. B. & McKnight, S. L. Science 246, 911–916 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Gartertberg, M. R., Ampe, C., Steitz, T. A. & Crothers, D. M. Proc. natn. Acad. Sci. U.S.A 87, 6034–6038 (1990).

    Article  ADS  Google Scholar 

  22. Oakly, M. G. & Dervan, P. B. Science 248, 847–850 (1990).

    Article  ADS  Google Scholar 

  23. Jordan, S. & Pabo, C. O. Science 242, 895–899 (1988).

    Article  ADS  Google Scholar 

  24. Rosenberg, A. H. et al. Gene 56, 125–135 (1987).

    Article  CAS  Google Scholar 

  25. Studier, F. W. & Moffat, B. A. J. molec. Biol. 189, 113–130 (1986).

    Article  CAS  Google Scholar 

  26. Bowie, J. U. & Sauer, R. T. Biochemistry 28, 7139–7143 (1989).

    Article  CAS  Google Scholar 

  27. O'Shea, E. K., Rutkowski, R., Stafford, W. F. III & Kim, P. S. Science 243, 1689–1694 (1989).

    Article  Google Scholar 

  28. Lehrer, S. S., Qian, Y. & Hvidt, S. Science 246, 926–928 (1989).

    Article  ADS  CAS  Google Scholar 

  29. Chen, Y.-H., Yang, J. T. & Chou, K. H. Biochemistry 13, 3350–3356 (1974).

    Article  CAS  Google Scholar 

  30. Johnson, W. C. Jr Protein Secondary Structure and Circular Dichroism: a Practical Guide 205–214 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, M., Ellenberger, T., Wobbe, C. et al. Folding transition in the DMA-binding domain of GCN4 on specific binding to DNA. Nature 347, 575–578 (1990). https://doi.org/10.1038/347575a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347575a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing