Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

RNA polymerase II C-terminal repeat influences response to transcriptional enhancer signals

Abstract

THE large subunit of RNA polymerase II contains a highly conserved and essential heptapeptide repeat (Pro-Thr-Ser-Pro-Ser-Tyr-Ser) at its carboxy terminus1–7. Saccharomyces cerevisiae cells are inviable if their RNA polymerase II large subunit genes encode fewer than 10 complete heptapeptide repeats; if they encode 10 to 12 complete repeats cells are temperature-sensitive and cold-sensitive, but 13 or more complete repeats will allow wild-type growth at all temperatures3. Cells containing C-terminal domains (CTDs) of 10 to 12 complete repeats are also inositol auxotrophs8. The phenotypes associated with these CTD mutations are not a consequence of an instability of the large subunit3; rather, they seem to reflect a functional deficiency of the mutant enzyme. We show here that partial deletion mutations in RNA polymerase II CTD affect the ability of the enzyme to respond to signals from upstream activating sequences in a subset of promoters in yeast. The number of heptapeptide repeats required for maximal response to signals from these sequences differs from one upstream activating sequence to another. One of the upstream elements that is sensitive to truncations of the CTD is the 17-base-pair site bound by the GAL4 transactivating factor.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Allison, L. A., Moyle, M., Shales, M. & Ingles, C. J. Cell 42, 599–610 (1985).

    Article  CAS  Google Scholar 

  2. Corden, J. L., Cadena, D. L., Ahearn, J. M. & Dahmus, M. E. Proc. natn. Acad. Sci. U.S.A. 82, 7934–7938 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Nonet, M., Sweetser, D. & Young, R. A. Cell 50, 909–915 (1987).

    Article  CAS  Google Scholar 

  4. Ahearn, J. M. Jr, Bartolomei, M. S., West, M. L., Cisek, L. J. & Corden, J. L. J. biol. Chem. 262, 10695–10705 (1987).

    CAS  Google Scholar 

  5. Allison, L. A., Wong, J. K.-C., Fitzpatrick, V. D., Moyle, M. & Ingles, C. J. Molec cell. Biol. 8, 321–329 (1988).

    Article  CAS  Google Scholar 

  6. Bartolomei, M. S., Halden, N. F., Cullen, C. R. & Corden, J. L. Molec cell. Biol. 8, 330–339 (1988).

    Article  CAS  Google Scholar 

  7. Zehring, W. A., Lee, J. M., Weeks, J. R., Jokerst, R. S. & Greenleaf, A. L. Proc. natn. Acad. Sci. U.S.A. 85, 3698–3702 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Nonet, M. & Young, R. A. Genetics 123, 715–724 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Greenberg, M., Goldwasser, P. & Henry, S. A. Molec. gen. Genet. 186, 157–163 (1982).

    Article  CAS  Google Scholar 

  10. Guarente, L. Cell 52, 303–305 (1988).

    Article  CAS  Google Scholar 

  11. Struhl, K. A. Rev. Biochem. 58, 1051–1077 (1989).

    Article  CAS  Google Scholar 

  12. Thompson, N. E., Steinberg, T. H., Aronson D. B. & Burgess, R. R. J. biol. Chem. 264, 11511–11520 (1989).

    CAS  PubMed  Google Scholar 

  13. Kim, W-Y. & Dahmus, M. J. biol. Chem. 264, 3169–3176 (1989).

    CAS  PubMed  Google Scholar 

  14. Sigler, P. Nature 333, 210–212 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Suzuki, M. Nature 344, 562–565 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Pugh, B. F. & Tjian, R. Cell 61, 1187–1197 (1990).

    Article  CAS  Google Scholar 

  17. Berger, S. L., Cress, W. D., Cress, A., Triezenberg, S. J. & Guarente, L. Cell 61, 1199–1208 (1990).

    Article  CAS  Google Scholar 

  18. Kelleher, R. J., Flanagan, P. M. & Kornberg, R. D. Cell 61, 1209–1215 (1990).

    Article  CAS  Google Scholar 

  19. Stringer, K. F., Ingles, C. J. & Greenblatt, J. Nature 345, 783–786 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Lewin, B. Cell 61, 1161–1164 (1990).

    Article  CAS  Google Scholar 

  21. Woychik, N. & Young, R. A. Trends biochem. Sci. 15, 347–351 (1990).

    Article  CAS  Google Scholar 

  22. Scafe, C., Nonet, M. & Young, R. A. Molec. cell. Biol. 10, 1010–1016 (1990).

    Article  CAS  Google Scholar 

  23. Sherman, F., Fink, G. R. & Hicks, J. B. Laboratory Course Manual for Methods in Yeast Genetics (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1986).

    Google Scholar 

  24. Guarente, L. & Mason, T. Cell 32, 1279–1286 (1983).

    Article  CAS  Google Scholar 

  25. Guarente, L., Yocum, R. R. & Gifford, P. Proc. natn. Acad. Sci. U.S.A. 79, 7410–7414 (1982).

    Article  ADS  CAS  Google Scholar 

  26. Hinnebusch, A. G., Lucchini, G. & Fink, G. R. Proc. natn. Acad. Sci. U.S.A. 82, 498–502 (1985).

    Article  ADS  CAS  Google Scholar 

  27. Rose, M., Casadaban, M. J. & Botstein, D. Proc. natn. Acad. Sci. U.S.A. 78, 2460–2464 (1981).

    Article  ADS  CAS  Google Scholar 

  28. Miller, J. H. Experiments in Molecular Genetics (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1972).

    Google Scholar 

  29. Giniger, E., Varnum, S. M. & Ptashne, M. Cell 40, 767–774 (1985).

    Article  CAS  Google Scholar 

  30. Company, M., Adler, C. & Errede, B. Molec. cell. Biol. 8, 2545–2554 (1988).

    Article  CAS  Google Scholar 

  31. Allison, L. A. & Ingles, J. Proc. natn. Acad. Sci. U.S.A. 86, 2794–2798 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scafe, C., Chao, D., Lopes, J. et al. RNA polymerase II C-terminal repeat influences response to transcriptional enhancer signals. Nature 347, 491–494 (1990). https://doi.org/10.1038/347491a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347491a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing