Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons

Abstract

INTEGRATION and processing of electrical signals in individual neurons depend critically on the spatial distribution of ion channels on the cell surface. In hippocampal pyramidal neurons, voltage-sensitive calcium channels have important roles in the control of Ca2+-dependent cellular processes such as action potential generation1,2, neurotransmitter release3, and epileptogenesis4,5. Long-term potentiation of synaptic transmission in the hippocampal pyramidal cell, a form of neuronal plasticity that is thought to represent a cellular correlate of learning and memory6,7, is dependent on Ca2+ entry mediated by synaptic activation of glutamate receptors that have a high affinity for NMDA (JV-methyl(-D-aspartate) and are located in distal dendrites8,9. Stimuli causing long-term potentiation at these distal synapses also cause a large local increase in cytosolic Ca2+ in the proximal regions of dendrites10. This increase has been proposed to result from activation of voltage-gated Ca2+ channels10. At least four types of voltage-gated Ca2+ channels, designated N, L, T and P (refs 11, 12), may be involved in these processes. Here we show that L-type Ca2+channels, visualized using a monoclonal antibody, are located in the cell bodies and proximal dendrites of hippocampal pyramidal cells and are clustered in high density at the base of major dendrites. We suggest that these high densities of L-type Ca2+channels may serve to mediate Ca2+ entry into the pyramidal cell body and proximal dendrites in response to summed excitatory inputs to the distal dendrites and to initiate intracellular regulatory events in the cell body in response to the same synaptic inputs that cause long-term potentiation at distal dendritic synapses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schwartzkroin, P. A. & Slawsky, M. Brain Res. 135, 157–161 (1977).

    Article  CAS  Google Scholar 

  2. Kay, A. R. & Wong, R. K. S. J. Physiol. 392, 603–619 (1987).

    Article  CAS  Google Scholar 

  3. Miller, R. J. Science 235, 46–52 (1988).

    Article  ADS  Google Scholar 

  4. Schwartzkroin, P. A. & Wyler, A. R. Ann. Neurol. 7, 95–107 (1980).

    Article  CAS  Google Scholar 

  5. Wadman, W. J., Heinemann, U., Konnerth, A. & Neuhaus, S. Expl Brain Res. 57, 404–407 (1985).

    Article  CAS  Google Scholar 

  6. Voronin, L. L. Neuroscience 10, 1051–1069 (1983).

    Article  CAS  Google Scholar 

  7. Teyler, T. J. & DiScenna, P. A. A. Rev. Neurosci. 10, 131–161 (1987).

    Article  CAS  Google Scholar 

  8. Malenka, R. C., Kauer, J. A., Zucker, R. S. & Nicoll, R. A. Science 242, 81–83 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Williams, J. H. & Bliss, T. V. P. Neurosci. Lett. 88, 81–85 (1988).

    Article  CAS  Google Scholar 

  10. Regehr, W. G., Connor, J. A. & Tank, D. W. Nature 341, 533–536 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Nowycky, M. C., Fox, A. P. & Tsien, R. W. Nature 316, 440–443 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Tank, D. W., Sugimori, M., Connor, J. A. & Llinás, R. R. Science 242, 773–777 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Tsien, R. W., Hess, P., McCleskey, E. W. & Rosenberg, R. L. A. Rev. Biophys. Chem. 16, 265–290 (1987).

    Article  CAS  Google Scholar 

  14. McCleskey, E. W. et al. Proc. natn. Acad. Sci. U.S.A. 84, 4327–4331 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Triggle, D. J. & Janis, R. A. A. Rev. Pharmac. Tox. 27, 347–369 (1987).

    Article  CAS  Google Scholar 

  16. Aosaki, T. & Kasai, H. Pflugers Arch. 414, 150–156 (1989).

    Article  CAS  Google Scholar 

  17. Ahlijanian, M. K. & Catterall, W. A. Soc. Neurosci. Abstr. 15, 825 (1989).

    Google Scholar 

  18. Wong, R. K. S. & Prince, D. A. Brain Res. 159, 385–390 (1978).

    Article  CAS  Google Scholar 

  19. Benardo, L. S., Masukawa, L. M. & Prince, D. A. J. Neurosci. 2, 1614–1622 (1982).

    Article  CAS  Google Scholar 

  20. Gould, R. J., Murphy, K. M. M. & Synder, S. H. Brain Res. 217, 217–223 (1987).

    Google Scholar 

  21. Mourre, C., Cervera, P. & Lazdunski, M. Brain Res. 417, 21–32 (1987).

    Article  CAS  Google Scholar 

  22. Jones, O. T., Kunze, D. L. & Angelides, K. J. Science 244, 1189–1193 (1989).

    Article  ADS  CAS  Google Scholar 

  23. Nicoll, R. A., Kauer, J. A. & Malenka, R. C. Neuron 1, 97–103 (1988).

    Article  CAS  Google Scholar 

  24. Hopkins, W. F. & Johnston, D. J. Neurophys. 59, 667–687 (1988).

    Article  CAS  Google Scholar 

  25. Malinow, R., Schulman, H. & Tsien, R. W. Science 245, 862–866 (1989).

    Article  ADS  CAS  Google Scholar 

  26. Takahashi, M. & Catterall, W. A. Science 236, 88–91 (1987).

    Article  ADS  CAS  Google Scholar 

  27. Yamaguchi, T., Saisu, H., Mitsui, H. & Abe, T. J. biol. Chem. 19, 9491–9498 (1988).

    Google Scholar 

  28. Abe, T. & Saisu, H. J. biol. Chem. 262, 9877–9822 (1987).

    CAS  PubMed  Google Scholar 

  29. Curtis, B. M. & Catterall, W. A. J. biol. Chem. 258, 7280–7283 (1983).

    CAS  PubMed  Google Scholar 

  30. Westenbroek, R. E., Merrick, D. K. & Catterall, W. A. Neuron 3, 695–704 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westenbroek, R., Ahlijanian, M. & Catterall, W. Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 347, 281–284 (1990). https://doi.org/10.1038/347281a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347281a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing