Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Engineering cyclophilin into a proline-specific endopeptidase

An Erratum to this article was published on 16 July 1998

Abstract

Designing an enzyme requires, among a number of parameters, the appropriate positioning of catalytic machinery within a substrate-binding cleft. Using the structures of cyclophilin–peptide complexes1,2,3,4, we have engineered a new catalytic activity into an Escherichia coli cyclophilin by mutating three amino acids, close to the peptide binding cleft, to form a catalytic triad similar to that found in serine proteases. In conjunction with cyclophilin's specificity for proline-bearing peptides, this creates a unique endopeptidase, cyproase 1, which cleaves peptides on the amino-side of proline residues. When acting on an Ala-Pro dipeptide, cyproase 1 has an efficiency (kcat/Km) of 0.7 × 104 M−1 s−1 and enhances the rate of reaction (kcat/kuncat) 8× 108-fold. This activity depends upon a deprotonated histidine and is inhibited by nucleophile-specific reagents, as occurs in natural serine proteases. Cyproase 1 can hydrolyse a protein substrate with a proline-specific endoprotease activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enlarged view of the active site of an E. coli cyclophilin (PDB entry 1LOP2) illustrating the location of the Ala-Pro binding site and the enzyme residues selected for subsequent substitutions.
Figure 2: Degradation of a protein by cyproase I.
Figure 3: pH-rate profile of cyproase I.

Similar content being viewed by others

References

  1. Clubb, R. T., Ferguson, S. B., Walsh, C. T. & Wagner, G. Three-dimensional solution structure of Escherichia coli periplasmic cyclophilin. Biochemistry 33, 2761–2772 (1994).

    Article  CAS  Google Scholar 

  2. Konno, M., Ito, M., Hayano, T. & Takahashi, N. The substrate-binding site in Escherichia coli cyclophilin A preferably recognizes a cis-proline isomer or a highly distorted form of the trans-isomer. J. Mol. Biol. 256, 897–908 (1996).

    Article  CAS  Google Scholar 

  3. Zhao, Y. & Ke, H. Mechanistic implication of crystal structures of the cyclophilin-dipeptide complexes. Biochemistry 35, 7362–7362 (1996).

    Article  CAS  Google Scholar 

  4. Zhao, Y. & Ke, H. Crystal structure implies that cyclophilin predominantly catalyzes the trans to cis isomerization. Biochemistry 35, 7356–7362 (1996).

    Article  CAS  Google Scholar 

  5. Kirby, A. J. Enzyme mechanisms, models, and mimics. Angew. Chem. Int. Ed. Engl. 35, 707–724 (1996).

    Article  CAS  Google Scholar 

  6. Matthews, B. W., Craik, C. S. & Neurath, H. Can small cyclic peptides have the activity and specificity of proteolytic enzymes. Proc. Natl Acad. Sci. USA 91, 4103–4105 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Fersht, A. Enzyme Structure and Mechanism (W. H. Freeman, New York, (1985)).

    Google Scholar 

  8. Fischer, G., Wittmann-Liebold, B., Lang, K., Kiefhaber, T. & Schmid, F. X. Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 337, 476–478 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Galat, A. & Metcalfe, S. M. Peptidylproline cis/trans isomerases. Prog. Biophys. Mol. Biol. 63, 69–119 (1995).

    Article  Google Scholar 

  10. Carter, P. & Wells, J. A. Dissecting the catalytic triad of a serine protease. Nature 332, 564–568 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Bode, W. & Huber, R. Natural protein proteinase inhibitors and their interaction with proteinase. Eur. J. Biochem. 204, 433–451 (1992).

    Article  CAS  Google Scholar 

  12. Gamble, T. R. et al. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87, 1285–1294 (1996).

    Article  CAS  Google Scholar 

  13. Kahne, D. & Still, W. C. Hydrolysis of a peptide bond in neutral water. J. Am. Chem. Soc. 110, 7529–7534 (1988).

    Article  CAS  Google Scholar 

  14. Radzicka, A. & Wolfenden, R. Aproficient enzyme. Science 267, 90–93 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Stein, R. L. Mechanism of enzymatic and nonenzymatic prolyl cis-trans isomerization. Adv. Prot. Chem. 44, 1–24 (1993).

    ADS  CAS  Google Scholar 

  16. Maillère, B. et al. Immunogenicity of a disulphide-containing neurotoxin: presentation to T-cells requires a reduction step. Toxicon 33, 475–482 (1995).

    Article  Google Scholar 

  17. Ménez, A., Montenay-Garestier, T., Fromageot, P. & Hélène, C. Conformation of two homologous neurotoxins. Fluorescence and circular dichroism studies. Biochemistry 19, 5202–5208 (1980).

    Article  Google Scholar 

  18. Strynadka, N. C. J. et al. Molecular structure of the acyl-enzyme intermediate in β-lactam hydrolysis at 1.7 Å resolution. Nature 359, 700–705 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Duggleby, H. J. et al. Penicillin acylase has a single-amino-acid catalytic centre. Nature 373, 264–268 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Scott, D. L. et al. Interfacial catalysis: the mechanism of phospholipase A2. Nature 250, 1541–1546 (1990).

    CAS  Google Scholar 

  21. Liu, J. L. & Walsh, C. T. Peptidyl-prolyl cis-trans isomerase from Escherichia coli: A periplasmic homolog of cyclophilin that is not inhibited by cyclosporin A. Proc. Natl Acad. Sci. USA 87, 4028–4032 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Plummer, T. H. J & Kimmel, M. T. An improved spectrophotometric assay for human carboxypeptidase N1. Anal. Biochem. 108, 348–353 (1980).

    Article  CAS  Google Scholar 

  23. Kraulis, P. Molscript: a program to produce both detailed and schematic plots of protein structures. J.Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  24. Merritt, E. A. & Murphy, M. Raster3D version 2.0 — a program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).

    Article  CAS  Google Scholar 

  25. Segel, I. H. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-state Enzyme Systems (John Wiley, New York, (1993)).

    Google Scholar 

Download references

Acknowledgements

We thank J. Janin, F. Lederer and G. Robillard for useful and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Quéméneur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quéméneur, E., Moutiez, M., Charbonnier, JB. et al. Engineering cyclophilin into a proline-specific endopeptidase. Nature 391, 301–304 (1998). https://doi.org/10.1038/34687

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/34687

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing