Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Arabidopsis thaliana contains two genes for TFIID

Abstract

THE general transcription initiation factor TFIID plays a primary part in the activation of eukaryotic genes transcribed by RNA polymerase II. Binding of TFIID to the TATA box initiates the assembly of other general transcription factors as well as RNA polymerase II at the promoter resulting in a preinitiation complex capable of accurate transcription initiation in vitro1–3. Human TFIID has been shown to interact with various regulatory factors4–8. The observation that stimulation of transcription by different trans-acting factors is mediated through distinct TATA elements led to the suggestion that different types of TFIID may exist in yeast9–11, humans12–15 and plants16. Here we report the cloning and characterization of two distinct TFIID complementary DNA clones from Arabidopsis thaliana. Furthermore, we have found that TFIID from Arabidopsis and other organisms shows homology to helix-loop-helix proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nakajima, N., Horikoshi, M. & Roeder, R. G. Molec. cell. Biol. 8, 4028–4040 (1988).

    Article  CAS  Google Scholar 

  2. Van Dyke, M. W., Roeder, R. G., & Sawadogo, M. Science 241, 1335–1338 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Buratowski, S., Hahn, S., Guarente, L. & Sharp, P. A. Cell 56, 549–561 (1989).

    Article  CAS  Google Scholar 

  4. Sawadogo, M. & Roeder, R. G. Cell 43, 165–175 (1985).

    Article  CAS  Google Scholar 

  5. Sawadogo, M. J. biol. Chem. 263, 11994–12001 (1988).

    CAS  PubMed  Google Scholar 

  6. Horikoshi, M., Carey, M. F., Kakidani, H. & Roeder, R. G. Cell 54, 665–669 (1988).

    Article  CAS  Google Scholar 

  7. Horikoshi, M., Hai, T., Lin, Y.-S., Green, M. R. & Roeder, R. G. Cell 54, 1033–1042 (1988).

    Article  CAS  Google Scholar 

  8. Hai, T., Horikoshi, M., Roeder, R. G. & Green, M. R. Cell 54, 1043–1051 (1988).

    Article  CAS  Google Scholar 

  9. Struhl, K. Molec. cell. Biol. 6, 3487–3853 (1986).

    Article  Google Scholar 

  10. Chen, W. & Struhl, K. Proc. natn. Acad Sci. U.S.A. 85, 2691–2695 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Harbury, P. A. B. & Struhl, K. Molec. cell. Biol. 9, 5298–5304 (1989).

    Article  CAS  Google Scholar 

  12. Simon, M. C., Fisch, T. M., Benecke, B. J., Nevins, J. R. & Heintz, N. Cell 52, 723–729 (1988).

    Article  CAS  Google Scholar 

  13. Simon, M. C., Rooney, R. J., Fisch, T. M., Heintz, N. & Nevins, J. R. Proc. natn. Acad Sci. U.S.A. 87, 513–517 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Taylor, I. C. A. & Kingston, R. E. Molec. cell. Biol. 10, 165–175 (1990).

    Article  CAS  Google Scholar 

  15. Wefald, C. W., Devlin, B. H. & Williams, S. Nature 344, 260–262 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Kuhlemeier, C., Strittmatter, G., Ward, K. & Chua, N.-H. Plant Cell 1, 471–478 (1989).

    Article  CAS  Google Scholar 

  17. Horikoshi, M. et al. Nature 341, 299–303 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Hahn, S., Buratowski, S., Sharp, P. A. & Guarente, L. Cell 58, 1173–1181 (1989).

    Article  CAS  Google Scholar 

  19. Eisenmann, D. M., Dollard, C. & Winston, F. Cell 58, 1183–1191 (1989).

    Article  CAS  Google Scholar 

  20. Schmidt, M. C., Kao, C. C., Pei, R. & Berk, A. J. Proc. natn. Acad Sci. U.S.A. 86, 7785–7789 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Cavallini, B. et al. Proc. natn. Acad Sci. U.S.A 86, 9803–9807 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Sawadogo, M. & Roeder, R. G. Proc. natn. Acad Sci. U.S.A. 82, 4394–4398 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Horikoshi, M., Yamamoto, T., Ohkuma, Y., Weil, P. A. & Roeder, R. G. Cell 61, 1171–1178 (1990).

    Article  CAS  Google Scholar 

  24. Hoffmann, A. et al. Nature 346, 387–390 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Murre, C., McCaw, P. S. & Baltimore, D. Cell 56, 777–783 (1989).

    Article  CAS  Google Scholar 

  26. Rosenberg, A. H. et al. Gene 56, 125–135 (1987).

    Article  CAS  Google Scholar 

  27. Hoffmann, A., Horikoshi, M., Wang, C. K., Schroeder, S. & Roeder, R. G. Genes Dev. 4, 1141–1148 (1990).

    Article  CAS  Google Scholar 

  28. Battey, J. C. et al. Cell 34, 779–787 (1983).

    Article  CAS  Google Scholar 

  29. Benezra, R., Davis, R. L., Lockshon, D., Turner, D. L. & Weintraub, H. Cell 61, 49–59 (1990).

    Article  CAS  Google Scholar 

  30. Beckmann, H., Su, L.-K. & Kadesch, T. Genes Dev. 4, 167–179 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasch, A., Hoffmann, A., Horikoshi, M. et al. Arabidopsis thaliana contains two genes for TFIID. Nature 346, 390–394 (1990). https://doi.org/10.1038/346390a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346390a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing