Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

New variation on the translocation of proteins during early biogenesis of apolipoprotein B

Abstract

APOLIPOPROTEIN B (apo B) is crucial for the transport of cholesterol in humans. It is a large secretory protein that mediates the uptake of low-density lipoproteins and renders several forms of lipid droplets soluble in the blood1–3. The binding of lipid by apo B also prevents this hydrophobic protein from precipitating in aqueous solution4. In the endoplasmic reticulum, nascent secretory proteins must be translocated through an aqueous channel in the membrane into the aqueous lumen5, so some novel form of processing may be necessary to maintain the solubility of apo B during its translocation. We have discovered that the biogenesis of apo B in cell-free systems does indeed involve a new variation on protein translocation: unlike typical secretory proteins, apo B is synthesized as a series of transmembrane chains with large cytoplasmic domains and progressively longer amino-terminal regions that are protected against added proteases during the translocation process. In contrast to typical transmembrane proteins, these transmembrane chains are not integrated into the bilayer. Moreover, the transmembrane chains with the shortest protected domains are precursors of forms whose protection is progressively extended to cover the length of the protein. This stepwise conversion occurs post-translationally for the most part. We propose a model on the basis of these findings for the biogenesis of apo B.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brown, M. S. & Goldstein, J. L. Science 232, 34–47 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Scott, J. Molec. biol. Med. 6, 65–80 (1989).

    CAS  PubMed  Google Scholar 

  3. Kane, J. P. A. Rev. Physiol. 45, 637–650 (1986).

    Article  Google Scholar 

  4. Fisher, W. R. & Schumaker, V. N. Meth. Enzym. 128, 247–262 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. Gilmore, R. & Blobel, G. Cell 42, 497–505 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Borchardt R. A. & Davis R. A. J. biol. Chem. 262, 16394–16402 (1987).

    CAS  PubMed  Google Scholar 

  7. Glickman, R. M. Rogers, M. & Glickman, J. N. Proc. natn. Acad. Sci. U.S.A. 83, 5296–5300 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Chen, S. H. et al. Science 238, 363–366 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Young, S. G., Bertics, S. J., Curtiss, L. K. & Witztum, J. L. J. clin. Invest. 79, 1831–1841 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Knott, T. J. et al. Nature 323, 734–738 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Yang, C. Y. et al. Nature 323, 738–742 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Rothman, R. E., Andrews, D. W., Calayag, C. & Lingappa, V. R. J. biol. Chem. 263, 10470–10480 (1988).

    CAS  PubMed  Google Scholar 

  13. Fujiki, Y., Hubbard, A. L., Fowler, S. & Lazarow, P. B. J. Cell Biol. 93, 97–102 (1982).

    Article  CAS  PubMed  Google Scholar 

  14. Perara, E. & Lingappa, V. R. in Protein Transfer and Organelle Biogenesis eds Das, R. C. & Robbins, P. W. 3–51 (Academic, New York, 1988).

    Google Scholar 

  15. Siegal, V. & Walter, P. Cell 52, 39–45 (1988).

    Article  Google Scholar 

  16. Olofsson, S. O. et al. Atherosclerosis 68, 1–17 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Bostrum, K. et al. J. biol Chem 263, 4434–4442 (1988).

    Google Scholar 

  18. Bamberger, M. J. & Lane, M. D. J. biol. Chem. 263, 11868–11878 (1988).

    CAS  PubMed  Google Scholar 

  19. Pullinger, C. R. et al. J. Lipid Res. 30, 1065–1077 (1989).

    CAS  PubMed  Google Scholar 

  20. Lippincott-Schwartz, J., Bonifacino, J. S., Yuan, L. C. & Klausner, R. D. Cell 54, 209–216 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Amara, J. F., Lederkremer, G. & Lodish, H. F. J. Cell Biol. 109, 3315–3324 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Blobel, G. Proc. natn. Acad. Sci. U.S.A. 77, 1496–1500 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Erickson, A. & Blobel, G. Meth. Enzym. 96, 38–42 (1983).

    Article  CAS  PubMed  Google Scholar 

  24. Melton, D. Nucleic Acids Res. 12, 7035–7056 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Perara, E. & Lingappa, V. R. J. Cell Biol. 101, 2292–2301 (1985).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuck, S., Yao, Z., Blackhart, B. et al. New variation on the translocation of proteins during early biogenesis of apolipoprotein B. Nature 346, 382–385 (1990). https://doi.org/10.1038/346382a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346382a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing