Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Triggering of cyclin degradation in interphase extracts of amphibian eggs by cdc2 kinase

Abstract

THE cell cycles of early Xenopus embryos consist of a rapid succession of alternating S and M phases1. These cycles are controlled by the activity of a protein kinase complex (cdc2 kinase) which contains two subunits. One subunit is encoded by the frog homologue of the fission yeast cdc2+ gene, p34cdc2 (ref. 2) and the other is a cyclin3. The concentration of cyclins follows a sawtooth oscillation because they accumulate in interphase and are destroyed abruptly during mitosis3. The association of cyclin and p34cdc2 (refs 4–7) is not sufficient for activation of cdc2 kinase, however; dephosphorylation of key tyrosine and threonine residues of p34cdc2 is necessary to turn on its kinase activity8–11. The activity of cdc2 kinase is thus regulated by a combination of translational and post-translational mechanisms. The loss of cdc2 kinase activity at the end of mitosis depends on the destruction of the cyclin subunits3,4,12,13. It has been suggested that this destruction is induced by cdc2 kinase itself, thereby providing a negative feedback loop to terminate mitosis14,15. Here we report direct experimental evidence for this idea by showing that cyclin proteolysis can be triggered by adding cdc2 kinase to a cell-free extract of interphase Xenopus eggs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kirschner, M., Newport, J. & Gerhart, J. Trends Genet. 1, 41–47 (1985).

    Article  Google Scholar 

  2. Nurse, P. Nature 344, 503–508 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Murray, A. W. & Kirschner, M. W. Science 246, 614–621 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Draetta, G. et al. Cell 56, 829–838 (1989).

    Article  CAS  Google Scholar 

  5. Meijer, L. et al. EMBO J. 8, 2275–2282 (1989).

    Article  CAS  Google Scholar 

  6. Labbé, J.-C. et al. EMBO J. 8, 3053–3058 (1989).

    Article  Google Scholar 

  7. Gautier, J. et al. Cell 60, 487–494 (1990).

    Article  CAS  Google Scholar 

  8. Morla, A., Draetta, G., Beach, D. & Wang, J. Y. J. Cell 58, 193–203 (1989).

    Article  CAS  Google Scholar 

  9. Dunphy, W. & Newport, J. Cell 58, 181–191 (1989).

    Article  CAS  Google Scholar 

  10. Gautier, J., Matsukawa, T., Nurse, P. & Maller, J. Nature 339, 626–629 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Gould, K. L. & Nurse, P. Nature 342, 39–45 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Westendorf, J. M., Swenson, K. I. & Ruderman, J. V. J. Cell Biol. 108, 1431–1444 (1989).

    Article  CAS  Google Scholar 

  13. Luca, F. & Ruderman, J. V. J. Cell Biol. 109, 1895–1909 (1989).

    Article  CAS  Google Scholar 

  14. Murray, A. W., Solomon, M. J. & Kirschner, M. W. Nature 339, 280–286 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Felix, M.-A., Pines, J., Hunt, T. & Karsenti, E. EMBO J. 8, 3059–3069 (1989).

    Article  CAS  Google Scholar 

  16. Pines, J. & Hunt, T. EMBO J. 6, 2987–2995 (1987).

    Article  CAS  Google Scholar 

  17. Labbe, J. C., Picard, A., Karsenti, E. & Doree, M. Devl. Biol. 127, 157–69 (1988).

    Article  CAS  Google Scholar 

  18. Labbe, J. C., Lee, M. G., Nurse, P., Picard, A. & Dorée, M. Nature 335, 251–254 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Dunphy, W. G. & Newport, J. W. J. Cell Biol. 106, 2047–2056 (1988).

    Article  CAS  Google Scholar 

  20. Neant, I., Charbonneau, M. & Guemer, P. Devl Biol. 132, 304–314 (1989).

    Article  CAS  Google Scholar 

  21. Matthews, H. R. & Huebner, V. D. Molec. cell Biol. 59, 81–99 (1984).

    CAS  Google Scholar 

  22. Langan, T. A. et al. Molec. cell. Biol. 9, 3860–3868 (1989).

    Article  CAS  Google Scholar 

  23. Wu, M. & Gerhart, J. C. Devl Biol. 79, 465–477 (1980).

    Article  CAS  Google Scholar 

  24. Erikson, E. & Maller, J. J. biol. Chem. 264, 19577–19582 (1989).

    CAS  PubMed  Google Scholar 

  25. Haystead, T. A. J. et al. Nature 337, 78–81 (1989).

    Article  ADS  CAS  Google Scholar 

  26. Felix, M.-A., Cohen, P. & Karsenti, E. EMBO J. 9, 675–683 (1990).

    Article  CAS  Google Scholar 

  27. Murray, A. W. & Kirschner, M. W. Nature 339, 275–280 (1989).

    Article  ADS  CAS  Google Scholar 

  28. Labbe, J. C. et al. Cell 57, 253–263 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Félix, MA., Labbé, JC., Dorée, M. et al. Triggering of cyclin degradation in interphase extracts of amphibian eggs by cdc2 kinase. Nature 346, 379–382 (1990). https://doi.org/10.1038/346379a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346379a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing