Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Striking conservation of TFIID in Schizosaccharomyces pombe and Saccharomyces cerevisiae

Abstract

EUKARYOTIC promoters contain binding sites for basic transcription factors and gene-specific activator proteins1–6. The transcription factors interact at the TATA box, which lies close to the position of transcription initiation. Activators typically bind to distant sites that can lie kilobases away from the initiation site. The factor TFIID binds specifically to the TATA box to initiate an ordered pathway of assembly of the basic transcription factors5,7. Biochemical analyses have shown that human and Saccharomyces cerevisiae TFIID are functionally interchangeable in vitro8–10. To study further the functional conservation of this critical factor, we are surveying proteins from divergent organisms that can substitute in vivo for the S. cerevisiae TFIID. We report here the isolation of a unique gene from Schizosaccharomyces pombe that fully complements a null mutation in SPT15, the gene that encodes TFIID11–15 in S. cerevisiae. The Schiz. pombe gene encodes a protein 93% identical (166/178) to S. cerevisiae TFIID in a region consisting of a direct repeat.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Forsburg, S. & Guarente, L. A. Rev. Cell. Biol. 5, 153–180 (1989).

    Article  CAS  Google Scholar 

  2. Struhl, K. Cell 49, 295–297 (1987).

    Article  CAS  Google Scholar 

  3. Johnson, P. & McKnight, S. A. Rev. Biochem. 58, 799–839 (1989).

    Article  CAS  Google Scholar 

  4. Mitchell, P. J. & Tjian, R. Science 228, 371–378 (1989).

    Article  ADS  Google Scholar 

  5. Buratowski, S., Hahn, S., Guarente, L. & Sharp, P. Cell 56, 549–561 (1989).

    Article  CAS  Google Scholar 

  6. Hawley, D. & Roeder, R. J. blol. Chem. 262, 3452–3461 (1987).

    CAS  Google Scholar 

  7. Van Dyke, M. W., Roeder, R. G. & Sawadogo, M. Science 241, 1335–1338 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Buratowski, S., Hahn, S., Sharp, P. & Guarente, L. Nature 334, 37–42 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Cavallini, B. et al. Nature 334, 77–80 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Horikoshi, M. et al. Proc. natn. Acad. Sci. U.S.A. 86, 4843–4847, (1989).

    Article  ADS  CAS  Google Scholar 

  11. Hahn, S., Buratowski, S., Sharp, P. A. & Guarente, L. Cell 58, 1173–1181 (1989).

    Article  CAS  Google Scholar 

  12. Eisenmann, D. M., Dollard, C. & Winston, F. Cell 58, 1183–1191 (1989).

    Article  CAS  Google Scholar 

  13. Horikoshi, M. et al. Nature 341, 299–303 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Schmidt, M. C., Kao, C. C., Pei, R. & Berk, A. J. Proc. natn. Acad. Sci. U.S.A. 86, 7785–7789 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Cavallini, B. et al. Proc. natn. Acad. Sci. U.S.A. 86, 9803–9807 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Ammerer, G. Meth. Enzym. 101, 192–201 (1983).

    Article  CAS  Google Scholar 

  17. Winston, F., Chaleff, D., Valent, B. & Fink, G. Genetics 107, 179–197 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Matsumoto, D. & Yanagida, M. EMBO J. 4, 3531–3538 (1985).

    Article  CAS  Google Scholar 

  19. Russell, P. & Hall, B. D. J. biol. Chem. 258, 143–149 (1983).

    CAS  PubMed  Google Scholar 

  20. Russell, P. R. Gene 40, 125–130 (1985).

    Article  CAS  Google Scholar 

  21. Hoeijmakers, J. J. Nature 343, 417–418 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Nagai, K. Nature 343, 418 (1990).

    Article  ADS  CAS  Google Scholar 

  23. Sherman, F., Fink, G. R. & Hicks, J. B. Methods in Yeast Genetics (Cold Spring Harbor Laboratory, New York, 1986).

    Google Scholar 

  24. Rothstein, R. J. Meth. Enzym. 101, 202–211 (1983).

    Article  CAS  Google Scholar 

  25. Henikoff, S. Gene 28, 351–359 (1984).

    Article  CAS  Google Scholar 

  26. Del Sal, G., Manfioletti, G. & Schneider, D. Biotechniques 7, 514–519 (1989).

    CAS  PubMed  Google Scholar 

  27. Tabor, S. & Richardson, C. C. Proc. natn. Acad. Sci. U.S.A. 84, 4767–4771 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Sheen, J-Y. & Seed, B. Biotechniques 6, 942–944 (1988).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fikes, J., Becker, D., Winston, F. et al. Striking conservation of TFIID in Schizosaccharomyces pombe and Saccharomyces cerevisiae. Nature 346, 291–294 (1990). https://doi.org/10.1038/346291a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346291a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing