Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electronic properties of junctions between silicon and organic conducting polymers

Abstract

DIODES formed from semiconductor/metal interfaces often display non-ideal electronic properties. For instance, silicon/metal (Schottky) diodes made from n-type silicon and a variety of contacting metals exhibit only small differences in their rectification properties, despite theoretical and practical expectations that changes in the metal should effect changes in device properties1,2. Similarly, Schottky diodes formed on p-type silicon generally exhibit ohmic behaviour with poor rectification characteristics. This lack of electrical response to changes in the properties of the contacting metal phase is generally attributed to interfacial reactions that take place during the high-temperature thermal or electron-beam deposition of metals onto silicon3. Here we describe the fabrication of diodes using a low-temperature chemical procedure, in which contact to the semiconductor is made by a layer of the conducting organic polymer, polyacetylene. Unlike conventional metals, the electrical properties of polyacetylene can be manipulated through choice of the polymer dopant. The resultant organic/inorganic interfaces behave more ideally than contacts with conventional metals, in that changes in the electrical properties of the conducting polymer exert a large and predictable effect on the electrical properties of the resulting semiconductor/polymer diodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brillson, L. J. Surf. Sci. Rep., 2, 123–326 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Sze, S. M. Physics of Semiconductor Devices, 245–311 (Wiley, New York, 1981).

    Google Scholar 

  3. Bachrach, R. Z. in Metal-Semiconductor Schottky Barrier Junctions and Their Applications (ed. Sharma, B. L.) 93–99 (Plenum, New York, 1984).

    Google Scholar 

  4. Gronet, C. M., Lewis, N. S., Cogan, G. & Gibbons, J. Proc. natn. Acad. Sci. U.S.A. 80, 1152–1156 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Klavetter, F. L. & Grubbs, R. H. J. Am. chem. Soc. 110, 7807–7813 (1988).

    Article  CAS  Google Scholar 

  6. Schaverien, C., Dewan, J. & Schrock, R. R. J. Am. chem. Soc. 108, 2771–2773 (1986).

    Article  CAS  Google Scholar 

  7. Pekker, S. & Janossy, A. in Handbook of Conducting Polymers (ed. Skotheim, T. A.) 45–79 (Dekker, New York, 1986).

    Google Scholar 

  8. Pochan, J. M. in Handbook of Conducting Polymers (ed. Skotheim, T. A.) 1383–1405 (Dekker, New York, 1986).

    Google Scholar 

  9. Purtell, R. et al. J. Vac. Sci. Technol. 21, 615–616 (1982).

    Article  ADS  Google Scholar 

  10. Franciosi, A. et al. J. Vac. Sci. Technol. 21, 624–627 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Grunthaner, P. J., Grunthaner, F. J. & Madhukar, A. J. J. Vac. Sci. Technol. 21, 637–638 (1982).

    Article  ADS  Google Scholar 

  12. Salaneck, W. R. et al. J. chem. Phys. 72, 3674–3678 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Lee, J., Hanrahan, C., Arias, J., Martin, R. M. & Metiu, H. Phys. Rev. B32, 8216–8219 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Ozaki, M. et al. Appl. Phys. Lett. 35, 83–85 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Vannikov, A. V. & Zhuravleva, T. S. J. molec. Electron. 5, 63–70 (1989).

    CAS  Google Scholar 

  16. Kanicki, J. in Handbook of Conducting Polymers (ed. Skotheim, T. A.) 609–613 (Dekker, New York, 1986).

    Google Scholar 

  17. Simon, R. A. & Wrighton, M. S. Appl. Phys. Lett. 44, 930–932 (1984).

    Article  ADS  CAS  Google Scholar 

  18. Burroughes, J. H., Jones, C. A. & Friend, R. H. Nature 335, 137–141 (1988).

    Article  ADS  Google Scholar 

  19. Bottt, D. et al. Synth. Metals 14, 245–269 (1986).

    Article  Google Scholar 

  20. Edwards, J., Feast, W. J. & Bott, D. Polymer 25, 395–398 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sailor, M., Klavetter, F., Grubbs, R. et al. Electronic properties of junctions between silicon and organic conducting polymers. Nature 346, 155–157 (1990). https://doi.org/10.1038/346155a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346155a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing