Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation by light of methane emissions from a wetland

Abstract

WETLANDS provide up to 25% of the annual global flux of methane—an important greenhouse gas—to the atmosphere1–3. Despite many studies4–9, however, the factors that control emission from wetlands are uncertain. Methane production and transport by rooted vegetation10–15 have been emphasized, but methane oxidation has received little attention. Methane oxidation has been observed in a hardwood swamp7 and may consume >90% of the potential flux from rice paddies16–19. Here I report results from a Danish wetland which suggest that methane oxidation is highly variable, consuming <10% to >90% of the potential methane flux. Laboratory experiments suggest that this variability may be due in part to light-mediated changes in oxygen distribution within illuminated sediments. These results indicate that diffusive fluxes of methane from wetlands may be controlled by rates of oxidation, in addition to rates of methane production. Failure to consider the dynamics and controls of methane oxidation in methane-flux studies could result in incorrect estimates of wetland emission rates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wahlen, M. et al. Science 245, 286–290 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Matthews, E. & Fung, I. Global biogeochem. Cycles 1, 61–86 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Ehhalt, D. H. & Schmidt, U. Pure appl. Geophys. 116, 452–464 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Baker-Blocker, A., Donahue, T. M. & Mancy, K. H. Tellus 29, 245–250 (1977).

    Article  ADS  CAS  Google Scholar 

  5. Cicerone, R. J. & Shetter, J. D. J. geophys. Res. 88, 7203–7209 (1981).

    Article  ADS  Google Scholar 

  6. Harriss, R. C. & Sebacher, D. I. Geophys. Res. Lett. 8, 1002–1004 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Harriss, R. C., Gorham, E., Sebacher, D. I., Bartlett, K. B. & Flebbe, P. A. Nature 315, 652–654 (1982).

    Article  ADS  Google Scholar 

  8. Bartlett, K. B. et al. J. geophys. Res. 93, 1571–1582 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Wilson, J. O. et al. Biogeochemistry 8, 55–71 (1989).

    Article  CAS  Google Scholar 

  10. King, G. M. & Wiebe, W. J. Estuar. Coast. mar. Sci. 10, 215–223 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Zeikus, J. G. & Winfrey, M. J. Appl. envir. Microbiol. 31, 99–107 (1976).

    CAS  Google Scholar 

  12. Dacey, J. W. H. & Klug, M. J. Science 203, 1253–1254 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Dacey, J. W. H. Ecology 62, 1137–1147 (1981).

    Article  Google Scholar 

  14. Holzapfel-pschorn, A., Conrad, R. & Seiler, W. Pl. Soil 92, 223–233 (1985).

    Article  Google Scholar 

  15. Sebacher, D. I., Harriss, R. C. & Bartlett, K. B. J. envir. Qual. 14, 40–46 (1985).

    Article  CAS  Google Scholar 

  16. Harriss, R. C., Sebacher, D. I. & Day, F. P. Jr Nature 297, 673–674 (1982).

    Article  ADS  CAS  Google Scholar 

  17. DeBont, J. A. M., Lee, K. K. & Bouldin, D. F. Ecol. Bull., Stockholm 26, 91–96 (1976).

    CAS  Google Scholar 

  18. Holzapfel-pschorn, A., Conrad, R. & Seiler, W. FEMS Microbiol. Ecol. 31, 343–351 (1985).

    Article  CAS  Google Scholar 

  19. Schutz, H., Conrad, R. & Seiler, W. Biogeochemistry 7, 33–53 (1989).

    Article  CAS  Google Scholar 

  20. Bedard, C. & Knowles, R. Microbiol. Rev. 53, 68–84 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Salvas, P. L. & Taylor, B. F. Curr. Microbiol. 4, 305–308 (1980).

    Article  CAS  Google Scholar 

  22. Frenzel, P., Thebrath, B. & Conrad, R. FEMS Microbiol. Ecol. 73, 149–158 (1990).

    Article  CAS  Google Scholar 

  23. Revsbech, N. P., Jørgensen, B. B. & Blackburn, T. H. Limnol. Oceanogr. 28, 1062–1074 (1983).

    Article  ADS  Google Scholar 

  24. Revsbech, N. P., Nielsen, J. & Hansen, P. K. in Nitrogen Cycling in Coastal Marine Ecosystems (eds Blackburn, T. H. & Sørensen, J.) 69–83 (Wiley, New York, 1988).

    Google Scholar 

  25. Jensen, J. & Revsbech, N. P. FEMS Microbiol. Ecol. 62, 29–38 (1989).

    Article  CAS  Google Scholar 

  26. Wertlieb, D. & Vishniac, W. J. Bacteriol. 93, 1722–1724 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Blackburn, T. H., Kleiber, P. & Fenchel, T. Oikus 26, 103–108 (1975).

    Article  CAS  Google Scholar 

  28. Revsbech, N. P., Jørgensen, B. B. & Brix, O. Limnol. Oceanogr. 26, 717–730 (1981).

    Article  ADS  CAS  Google Scholar 

  29. Revsbech, N. P., Madsen, B. & Jørgensen, B. B. Limnol. Oceanogr. 31, 293–304 (1986).

    Article  ADS  CAS  Google Scholar 

  30. Carlton, R. G. & Wetzel, R. G. Limnol. Oceanogr. 33, 562–570 (1988).

    Article  ADS  CAS  Google Scholar 

  31. Reeburgh, W. S. & Heggie, D. T. Limnol. Oceanogr. 22, 1–9 (1977).

    Article  ADS  CAS  Google Scholar 

  32. Kuivila, K. M., Murray, J. W., Devol, A. H., Lidstrom, M. E. & Reimers, C. E. Limnol. Oceanogr. 33, 571–581 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, G. Regulation by light of methane emissions from a wetland. Nature 345, 513–515 (1990). https://doi.org/10.1038/345513a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/345513a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing