Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cytoplasmic dynein is localized to kinetochores during mitosis

Abstract

RECENT evidence suggests that the force for poleward movement of chromosomes during mitosis is generated at or close to the kinetochores1,2. Chromosome movement depends on motion relative to microtubules, but the identities of the motors remain uncertain1,3–7. One candidate for a mitotic motor is dynein, a large multimeric enzyme which can move along microtubules toward their slow growing end8–11. Dyneins were originally found in axonemes of cilia and flagella where they power microtubule sliding. Recently, cytoplasmic dyneins have also been found12, and specific antibodies have been raised against them. The cellular localization of dynein has previously been studied with several antibodies raised against flagellar dynein, but the relevance of these data to the distribution of cytoplasmic dynein is not known13–17. Antibodies raised against cytoplasmic dyneins have shown localization of dynein antigens to the mitotic spindles in Caenorhabditis elegans embryos (Lye et al., personal communication) and punctate cytoplasmic structures in Dictyostelium amoebae18. Using antibodies that recognize subunits of cytoplasmic dyneins, we show here that during mitosis, cytoplasmic dynein antigens concentrate near the kinetochores, centrosomes and spindle fibres of HeLa and PtK1 cells, whereas at interphase they are distributed throughout the cytoplasm. This is consistent with the hypothesis that cytoplasmic dynein is a mitotic motor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nicklas, R. B. J. Cell Biol. 109, 2245–2255 (1989).

    Article  CAS  Google Scholar 

  2. Rieder, C. L., Alexander, S. P. & Rupp, G. J. Cell Biol. 109, 2245–2255 (1989).

    Article  Google Scholar 

  3. Gorbsky, G. J., Sammak, P. J. & Borisy, G. G. J. Cell Biol. 104, 9–18 (1987).

    Article  CAS  Google Scholar 

  4. Koshland, D. E., Mitchison, T. J. & Kirschner, M. W. Nature 331, 499–504 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Mitchison, T. J., Evans, L. Schulze, E. & Kirschner, M. W. Cell 45, 515–527 (1986).

    Article  CAS  Google Scholar 

  6. Cande, W. Z. & McDonald, K. L. Cell 28, 15–22 (1985).

    Article  Google Scholar 

  7. Spurck, T. P. & Picket-Heaps, J. D. J. Cell Biol. 105, 1691–1705 (1987).

    Article  CAS  Google Scholar 

  8. Gibbons, I. R. J. Cell Biol. 91, 101s–124s (1981).

    Article  Google Scholar 

  9. Sale, W. S. & Satir, P. Proc. natn. Acad. Sci. U.S.A. 74, 2045–2049 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Paschal, B. M. & Vallee, R. B. Nature 330, 181–183 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Porter, M. E. & Johnson, K. A. A. Rev. Cell Biol. 5, 119–151 (1989).

    Article  CAS  Google Scholar 

  12. McIntosh, J. R. & Porter, M. E. J. biol. Chem. 264, 6001–6004 (1989).

    CAS  PubMed  Google Scholar 

  13. Mohri, H. et al. Dev. Growth Differ. 18, 391–398 (1976).

    Article  CAS  Google Scholar 

  14. Zieve, G. W. & McIntosh, J. R. J. Cell Sci. 48, 241–257 (1981).

    CAS  PubMed  Google Scholar 

  15. Piperno, G. J. Cell Biol. 98, 1842–1850 (1984).

    Article  CAS  Google Scholar 

  16. Hisanaga, Shin-ichi et al. Cell Motil. Cytoskel. 7, 97–109 (1987).

    Article  CAS  Google Scholar 

  17. Ogawa, K., Yokota, E. & Shirai, H. Biology of the Cell 64, 57–66 (1988).

    Article  CAS  Google Scholar 

  18. Koonce, M. P. & McIntosh, J. R. Cell Motil. Cytoskel. 15, 51–62 (1990).

    Article  CAS  Google Scholar 

  19. Lye, R. J., Pfarr, C. M. & Porter, M. E. In Cell Movement Vol. 2 141–154, (Liss, New York, 1989).

    Google Scholar 

  20. Lee-Eiford, A., Ow, R. A. & Gibbons, I. R. J. biol. Chem. 261, 2337–2342 (1986).

    CAS  PubMed  Google Scholar 

  21. Moroi, Y., Hartman, P., Nakane & Tan, E. J. Cell Biol. 90, 254–259 (1981).

    Article  CAS  Google Scholar 

  22. Carroll, S. B. & Stollar, D. J. biol. Chem. 258, 24–26 (1983).

    CAS  PubMed  Google Scholar 

  23. Olmsted, J. B. J. biol. Chem. 256, 11955–11957 (1981).

    CAS  PubMed  Google Scholar 

  24. Mitchison, T. J. & Kirschner, M. W. J. Cell Biol. 101, 755–765 (1985).

    Article  CAS  Google Scholar 

  25. Steuer, E. R., Wordeman, L., Schroer, T. A. & Sheetz, M. P. Nature 345, 266–268 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfarr, C., Coue, M., Grissom, P. et al. Cytoplasmic dynein is localized to kinetochores during mitosis. Nature 345, 263–265 (1990). https://doi.org/10.1038/345263a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/345263a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing