Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Collimation of electromagnetic radiation in optically thick astrophysical synchrotron sources

Abstract

COLLIMATION of energy output into two oppositely directed beams seems to be very common in the Universe, particularly in extra-galactic radio sources, but also within the Galaxy, for example SS433. The collimation mechanism is still in doubt. Here I discuss the possibility of collimation arising from anisotropic synchrotron absorption whereby electromagnetic waves are less strongly absorbed when propagating parallel, rather than perpendicular, to a magnetic field. This discussion can apply to any object which is optically thick to synchrotron emission, but I particularly have in mind the collimation of infrared/optical/ultraviolet radiation in active galactic nuclei. The beamed radiation may be seen in blazars1 and in the recent observations by di Serego Aligheri et al.2. The beams may also drive double radio sources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Angel, J. R. P. & Stockman, H. S. A. Rev. Astr. Astrophys. 8, 321–361 (1980).

    Article  ADS  Google Scholar 

  2. di Serego Aligheri, S., Fosbury, R. A. E., Quinn, P. J. & Tadhunter, C. N. Nature 341, 307–309 (1989).

    Article  ADS  Google Scholar 

  3. Melrose, D. B. Non-thermal Processes in Diffuse Magnetised Plasmas, Vol. 1 (Gordon & Breach, New York, 1980).

    Google Scholar 

  4. Begelman, M. C., Blandford, R. D. & Rees, M. J. Rev. mod. Phys. 56, 255–351 (1984).

    Article  ADS  Google Scholar 

  5. Michel, F. C. Rev. mod. Phys. 54, 1–66 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Bell, A. R. Mon. Not. R. astr. Soc. 179, 573–586 (1977).

    Article  ADS  CAS  Google Scholar 

  7. Wardle, J. F. C. Nature 269, 563–566 (1977).

    Article  ADS  Google Scholar 

  8. Ghisellini, G., Guilbert, P. W. & Svensson, R. Astrophys. J. 334, L5–L8 (1988).

    Article  ADS  Google Scholar 

  9. Antonucci, R. R. J. & Ulvestad, J. S. Astrophys. J. 294, 158–182 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Abramowicz, M. A. & Piran, T. P. Astrophys. J. 241, L7–L11 (1980).

    Article  ADS  Google Scholar 

  11. Madej, J., Loken, C. & Henriksen, R. N. Astrophys. J. 312, 652–658 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Kruer, W. L. The Physics of Laser Plasma Interactions (Addison-Wesley, Redwood City, 1988).

    Google Scholar 

  13. Milgrom, M. Astr. Astrophys. 78, L9–L12 (1979).

    ADS  CAS  Google Scholar 

  14. Margon, B. A. Rev. Astr. Astrophys. 22, 507–536 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, A. Collimation of electromagnetic radiation in optically thick astrophysical synchrotron sources. Nature 345, 136–138 (1990). https://doi.org/10.1038/345136a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/345136a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing