Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of a subdomain in the folding of bovine pancreatic trypsin inhibitor

Abstract

THE disulphide-bonded intermediates that accumulate in the oxidative folding of bovine pancreatic trypsin inhibitor (BPTI) were characterized some time ago1. Structural characterization of these intermediates would provide an explanation of the kinetically preferred pathways of folding for BPTI. When folding occurs under strongly oxidizing conditions, more than half the molecules become trapped in an intermediate, designated N*, which is similar to the native protein but lacks the 30–51 disulphide bond2–5. We have tested the hypothesis5 that the precursor to N* is the one-disulphide intermediate [5–55], which contains the most stable disulphide in BPTI, and present evidence here that this is the case. A peptide model of [5–55], corresponding to a subdomain of BPTI, seems to fold into a native-like conformation, explaining why [5–55] does not lead to native protein and why it folds rapidly5 to N*. A native-like subdomain structure in a peptide model6 of [30–51], the other crucial one-disulphide intermediate, may explain the route by which [30–51] folds to native protein. Thus, much of the folding pathway5 of BPTI can be explained by the formation of a native-like subdomain in these two early intermediates. This suggests that a large part of the protein folding problem can be reduced to identifying and understanding subdomains of native proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Creighton, T. E. Prog. Biophys. molec. Biol. 33, 231–297 (1978).

    Article  CAS  Google Scholar 

  2. States, D. J., Dobson, C. M., Karplus, M. & Creighton, T. E. Nature 286, 630–632 (1980).

    Article  ADS  CAS  Google Scholar 

  3. States, D. J., Dobson, C. M., Karplus, M. & Creighton, T. E. J. molec. Biol. 174, 411–418 (1984).

    Article  CAS  Google Scholar 

  4. Eigenbrot, C., Randal, M. & Kossiakoff, A. Protein Engineering (submitted).

  5. Creighton, T. E. & Goldenberg, D. P. J. molec. Biol. 179, 497–526 (1984).

    Article  CAS  Google Scholar 

  6. Oas, T. G. & Kim, P. S. Nature 336, 42–48 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Pardi, A., Wagner, G. & Wüthrich, K. Eur. J. Biochem. 137, 445–454 (1983).

    Article  CAS  Google Scholar 

  8. Wagner, G., DeMarco, A. & Wüthrich, K. Biophys. struct. Mechanisms 2, 139–158 (1976).

    Article  CAS  Google Scholar 

  9. Wagner, G., Bruhwiler, D. & Wüthrich, K. J. molec. Biol. 196, 227–231 (1987).

    Article  CAS  Google Scholar 

  10. Creighton, T. E. J. molec. Biol. 113, 313–328 (1977).

    Article  CAS  Google Scholar 

  11. Goldenberg, D. P. & Creighton, T. E. J. molec. Biol. 179, 527–545 (1984).

    Article  CAS  Google Scholar 

  12. Marks, C. B., Naderi, H., Kosen, P. A., Kurtz, I. D. & Anderson, S. in Protein Structure, Folding and Design Vol. 2 (ed. Oxender, D. L.) 335–340 (Liss, New York, 1987).

    Google Scholar 

  13. Goodman, E. M. & Kim, P. S. in Current Research in Protein Chemistry (ed. Villafranca, J. J.) (Academic, New York, in the press).

  14. Creighton, T. E. J. molec. Biol. 87, 579–602 (1974).

    Article  CAS  Google Scholar 

  15. States, D. J., Creighton, T. E., Dobson, C. M. & Karplus, M. J. molec. Biol. 195, 731–739 (1987).

    Article  CAS  Google Scholar 

  16. Creighton, T. E. J. molec. Biol. 113, 275–293 (1977).

    Article  CAS  Google Scholar 

  17. Creighton, T. E. J. molec. Biol. 151, 211–213 (1981).

    Article  CAS  Google Scholar 

  18. Lesk, A. M. & Rose, G. D. Biochemistry 78, 4304–4308 (1981).

    CAS  Google Scholar 

  19. Richardson, J. S. Adv. Protein Chem. 34, 167–339 (1981).

    Article  CAS  Google Scholar 

  20. Richardson, J. S. Meth. Enzym. 115, 359–380 (1985).

    Article  CAS  Google Scholar 

  21. Deisenhofer, J. & Steigemann, W. Acta crystallogr. B31, 238–250 (1975).

    Article  CAS  Google Scholar 

  22. Wlodawer, A., Walter, J., Huber, R. & Sjölin, L. J. molec. Biol. 180, 301–329 (1984).

    Article  CAS  Google Scholar 

  23. Wlodawer, A., Nacham, J., Gilliland, G. L., Gallagher, W. & Woodward, C. J. molec. Biol. 198, 469–480 (1987).

    Article  CAS  Google Scholar 

  24. Ellman, G. Arch. Biochem. Biophys. 82, 70–77 (1959).

    Article  CAS  Google Scholar 

  25. Edelhoch, H. Biochemistry 6, 1948–1954 (1967).

    Article  CAS  Google Scholar 

  26. Rosen, H. Arch. Biochem. Biophys. 67, 10–15 (1957).

    Article  CAS  Google Scholar 

  27. DeMarco, A. J. magn. Reson. 26, 527–528 (1977).

    ADS  CAS  Google Scholar 

  28. Creighton, T. E. J. molec. Biol. 87, 603–624 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staley, J., Kim, P. Role of a subdomain in the folding of bovine pancreatic trypsin inhibitor. Nature 344, 685–688 (1990). https://doi.org/10.1038/344685a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/344685a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing