Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Relative helix-forming tendencies of nonpolar amino acids

Abstract

AN important issue in understanding the relationship between protein sequence and structure is the degree to which different amino acids favour the formation of particular types of secondary structure. Estimates of the 'helix-forming tendency' of amino acids have been made based on 'host-guest' experiments, in which co-polymers are made of the amino acid of interest (the 'guest') and a host residue (typically hydroxypropyl- or hydroxybutyl-L-glutamine)1. Recently, however, short alanine-based peptides were found to form stable monomeric helices in water2, contrary to the result predicted from host–guest experiments2. We have now measured the helix-forming tendency of five different nonpolar amino acids (Ala, Ile, Leu, Phe, Val) by substituting each in turn for alanine in a 17-residue alanine-based peptide and determining the extent of α-helix formation. Our results differ from those of host–guest experiments both in the degree of variation in helix-forming tendency of different amino acids, and in the rank order of the helix-forming tendency. We conclude that the helix-forming tendency of a particular amino acid depends on the sequence context in which it occurs; and the restriction of side-chain rotamer conformations is important in determining the helix-forming tendency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Platzer, K. E. B., Ananthanarayanan, V. S., Andreatta, R. H. & Scheraga, H. A. Macromolecules 5, 177–187 (1972).

    Article  ADS  CAS  Google Scholar 

  2. Marqusee, S., Robbins, V. H. & Baldwin, R. L. Proc. natn. Acad. Sci. U.S.A. 86, 5286–5290 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Shoemaker, K. R. et al., Proc. natn. Acad. Sci. U.S.A. 82, 2349–2353 1985).

    Article  ADS  CAS  Google Scholar 

  4. Nelson, J. W. & Kallenbach, N. R. Proteins 1, 211–217 (1988).

    Article  Google Scholar 

  5. Sueki, M., Lee, S., Powers, S. P., Denten, J. B., Konishi, Y. & Scheraga, H. A. Macromolecules 17, 148–155 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Williams, R. W., Chang, A., Juretic, D. & Loughran, S. Biochim. Biophys. Acta 916, 200–204 (1987).

    Article  CAS  Google Scholar 

  7. Blout, E. R. in Polyamino Acids, Polypeptides and Proteins (ed. Stahmann, M. A.) 275–279 (University of Wisconsin Press, Madison, 1962).

    Google Scholar 

  8. Piela, L., Nemethy, G. & Scheraga, H. A. Biopolymers 26, 1273–1286 (1987).

    Article  CAS  Google Scholar 

  9. Ponder, J. W. & Richards, F. M. J. molec. Biol. 193, 775–791 (1987).

    Article  CAS  Google Scholar 

  10. Lim, W. A. & Sauer, R. T. Nature 339, 31–36 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Sandberg, W. S. & Terwilliger, T. C. Science 245, 54–57 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Karpusas, M., Baase, W. A., Matsumura, M. & Matthews, B. W. Proc. natn. Acad. Sci. U.S.A. 86, 8237–8241 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Stewart, J. M. & Young, J. D. Solid Phase Peptide Synthesis (Pierce Chemical Company, Rockford, Illinois, 1984).

    Google Scholar 

  14. Yphantis, D. A. Biochemistry 3, 297–317 (1964).

    Article  CAS  Google Scholar 

  15. McMeekin, T. L. & Marshall, K. Science 116, 142–143 (1952).

    Article  ADS  CAS  Google Scholar 

  16. Johnson, M. L., Correia, J. C., Yphantis, D. A. & Halvorson, H. R. Biophys. J. 38, 575–588 (1981).

    Article  Google Scholar 

  17. Williams, J. W., Van Holde, K. E., Baldwin, R. L. & Fujita, H. Chem. Rev. 58, 715–806 (1958).

    Article  CAS  Google Scholar 

  18. Strehlow, K. G. & Baldwin, R. L. Biochemistry 28, 2130–2133 (1989).

    Article  CAS  Google Scholar 

  19. Lifson, S. and Roig, A. J. Chem. Phys. 34, 1963–1974 (1961).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padmanabhan, S., Marqusee, S., Ridgeway, T. et al. Relative helix-forming tendencies of nonpolar amino acids. Nature 344, 268–270 (1990). https://doi.org/10.1038/344268a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/344268a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing