Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gene targeting in normal and amplified cell lines

Abstract

TARGETED recombination in mammalian cells is rare compared with non-homologous integration1–5. In Saccharomyces cerevisiae the reverse is true6,7. Differences in tageting efficiency could arise because a target of unique DNA is 200 times more dilute in mammalian genomes than it is in yeast. We tested this possibility by measuring gene targeting in normal CHO cells with two copies of the dihydrofolate reductase (DHFR) gene and in amplified CHOC 400 cells, which carry 800 copies8. If the concentration of the target gene is critical, amplified cells should show an enhanced frequency of targeted recombination relative to non-homologous integration. Using a positive/negative selection protocol3, we demonstrated that the efficiency of targeting into DHFR genes is indistinguishable in normal and amplified CHO cells. As targeting does not depend on the number of targets, the search for homology is not a rate-limiting step in the mammalian pathway of gene targeting. Thus, the difference in genome size is not the basis for the different outcomes of targeting experiments in S. cerevisiae and mammals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Smithies, O., Gregg, R. G., Boggs, S. S., Koralewski, M. A. & Kucherlapati, R. S. Nature 317, 230–234 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Thomas, K. R. & Capecchi, M. R. Cell 51, 503–512 (1987).

    Article  CAS  Google Scholar 

  3. Mansour, S. L., Thomas, K. R. & Capecchi, M. R. Nature 336, 348–352 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Adair, G. M. et al. Proa. natn. Acad. Scl. U.S.A. 88, 4574–4578 (1989).

    Article  ADS  Google Scholar 

  5. Joyner, A. L., Skarnes, W. C. & Rossant, J. Nature 338, 153–156 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Hinnen, A., Hicks, J. B. & Fink, G. R. Proc. natn. Acad. Sci. U.S.A. 75, 1929–1933 (1978).

    Article  ADS  CAS  Google Scholar 

  7. Rothstein, R. Meth. Enzym. 101, 202–211 (1983).

    Article  CAS  Google Scholar 

  8. Milbrandt, J. D., Heintz, N. H., White, W. C., Rothman, S. M. & Hamlin, J. L. Proc. natn. Acad. Sci. U.S.A. 78, 6043–6047 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Borrelli, E., Heyman, R., Hsi, M. & Evans, R. M. Proc. natn. Acad. Sci. U.S.A. 85, 7572–7576 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Roth, D. B., Porter, T. N. & Wilson, J. H. Molec. cell. Biol. 5, 2299–2607 (1985).

    Article  Google Scholar 

  11. Thomas, K. R., Folger, K. R. & Capecchi, M. R. Cell 44, 419–428 (1986).

    Article  CAS  Google Scholar 

  12. Steele, R. E., Bakken, A. H. & Reeder, R. H. Molec. cell. Biol. 4, 576–582 (1984).

    Article  CAS  Google Scholar 

  13. Wallenburg, J. C., Nepveu, A. & Chartrand, P. Nucleic Acids Res. 15, 7849–7863 (1987).

    Article  CAS  Google Scholar 

  14. Schweizer, E. C. MacKechnie, C. & Halvorson, H. O. J. molec. Biol. 40, 261–277 (1969).

    Article  CAS  Google Scholar 

  15. Szostak, J. W. & Wu, R. Plasmid 2, 536–554 (1979).

    Article  CAS  Google Scholar 

  16. Rommerskirch, W., Graeber, I., Grassmann, M. & Grassmann, A. Nucleic Acids Res. 16, 941–952 (1988).

    Article  CAS  Google Scholar 

  17. Capecchi, M. R. Science 244, 1288–1292 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Bradley, A., Evans, M., Kaufman, M. H. & Robertson, E. Nature 309, 255–256 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Thompson, S., Clarke, A. R., Pow, A. M., Hooper, M. L. & Melton, D. W. Cell 56, 313–321 (1989).

    Article  CAS  Google Scholar 

  20. Smolik-Utlaut, S. & Petes, T. D. Molec. cell. Biol. 3, 1204–1211 (1983).

    Article  CAS  Google Scholar 

  21. Orr-Weaver, T. L., Szostak, J. W. & Rothstein, R. J. Proc. natn. Acad. Sci. U.S.A 78, 6354–6358 (1981).

    Article  ADS  CAS  Google Scholar 

  22. Carothers, A. M., Urlaub, G., Ellis, N. & Chasin, L. A. Nucleic Acids Res. 11, 1997–2012 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, H., Wilson, J. Gene targeting in normal and amplified cell lines. Nature 344, 170–173 (1990). https://doi.org/10.1038/344170a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/344170a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing