Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

RNA bulges and the helical periodicity of double-stranded RNA

Abstract

RNA MOLECULES typically exhibit extensive secondary structure, including double-stranded duplex, hairpins, internal loops, bulged bases and pseudoknotted1,2 structures (reviewed in refs 3 and 4). This is intimately connected with biological function, including splicing reactions5,6 and ribozyme activity7,8. The formation of RNA–DNA hybrids is important in the transcription of DNA, reverse transcription of viral RNA, and DNA replication. Bulged bases in RNA helices are potentially significant in RNA folding and in providing sites for specific protein–RNA interactions, as illustrated by TFIIIA of Xenopus9and the coat protein of phage R17 (ref. 10). Most information about the structure of RNA derives from fibre diffraction11,12 or crystallography of natural molecules, notably transfer RNA13–17, but until recently there have been few systematic studies of RNA structure using designed sequences18–22. We have used gel electrophoresis to investigate the properties of bulged bases in both RNA and RNA–DNA duplexes in solution. As in DNA helices23–25, bulges introduce pronounced kinks into RNA and into RNA–DNA helices, depending on the number and types of bases in the bulge and its position in the fragment. By varying the spacing between two bulge-induced kinks, we have measured the periodicity of RNA and RNA–DNA helices in solution.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pleij, C. W. A., Rietveld, K. & Bosch, L. Nucleic Acids Res. 13, 1717–1731 (1985).

    Article  CAS  Google Scholar 

  2. Puglisi, J. D., Wyatt, J. R. & Tinoco Jr, I. Nature 321, 283–286 (1988).

    Article  ADS  Google Scholar 

  3. Delarue, M. & Moras, D. Nucleic Acids and Molecular Biology Vol. 3 (eds. Eckstein, F. & Lilley, D. M. J.), 182–196 (Springer-Verlag, Berlin and Heidelberg, 1989).

    Book  Google Scholar 

  4. Wyatt, J. R., Puglisi, J. D. & Tinoco Jr, I. BioEssays 11, 100–106 (1989).

    Article  CAS  Google Scholar 

  5. Cech, T. R. et al. Proc. natn. Acad. Sci. U.S.A. 80, 3903–3907 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Inoue, T. & Cech, T. R. Proc. natn. Acad. Sci. U.S.A. 82, 648–652 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Uhlenbeck, O. C. Nature 328, 596–600 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Haseloff, J. & Gerlach, W. L. Nature 334, 585–591 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Baudin, F. & Romaniuk, P. J. Nucleic Acids Res. 17, 2043–2056 (1989).

    Article  CAS  Google Scholar 

  10. Wu, H-N. & Uhlenbeck, O. C. Biochemistry 26, 8221–8227 (1987).

    Article  CAS  Google Scholar 

  11. Arnott, S., Fuller, W., Hodgson, A. & Prutton, I. Nature 220, 561–564 (1968).

    Article  ADS  CAS  Google Scholar 

  12. Arnott, S., Chandrasekharan, R., Millane, R. P. & Park, H.-S. J. molec. Biol. 188, 631–640 (1986).

    Article  CAS  Google Scholar 

  13. Quigley, G. J. et al. Proc. natn. Acad. Sci. U.S.A. 72, 4866–4870 (1975).

    Article  ADS  CAS  Google Scholar 

  14. Jack, A., Ladner, J. E. & Klug, A. J. molec. Biol. 108, 619–649 (1976).

    Article  CAS  Google Scholar 

  15. Moras, D. et al. Nature 288, 669–674 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Shevitz, R. W. et al. Nature 278, 188–190 (1979).

    Article  ADS  Google Scholar 

  17. Woo, N. H., Roe, B. A. & Rich, A. Nature 286, 346–351 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Wang, A. H-J. et al. Nature 299, 601–604 (1982).

    Article  ADS  CAS  Google Scholar 

  19. Dock-Bregeon, A. C. et al. Nature 335, 375–378 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Varani, G., Wimberley, B. & Tinoco, I. Biochemistry 28, 7760–7772 (1989).

    Article  CAS  Google Scholar 

  21. Chou, S-H., Flynn, P. & Reid, B. Biochemistry 28, 2422–2435 (1989).

    Article  CAS  Google Scholar 

  22. Zhang, P. & Moore, P. B. Biochemistry 28, 4607–4615 (1989).

    Article  CAS  Google Scholar 

  23. Hsieh, C-H. & Griffith, J. D. Proc. natn. Acad. Sci. U.S.A. 86, 4833–4837 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Bhattacharyya, A. & Lilley, D. M. J. Nucleic Acids Res. 17, 6821–6840 (1989).

    Article  CAS  Google Scholar 

  25. Rice, J. A. & Crothers, D. E. Biochemistry 28, 4512–4516 (1989).

    Article  CAS  Google Scholar 

  26. Woodson, S. A. & Crothers, D. M. Biochemistry 27, 3130–3141 (1988).

    Article  CAS  Google Scholar 

  27. Chou, S-H., Flynn, P. & Reid, B. Biochemistry 28, 2435–2443 (1989).

    Article  CAS  Google Scholar 

  28. Wu, H-M. & Crothers, D. E. Nature 308, 509–513 (1984).

    Article  ADS  CAS  Google Scholar 

  29. Rhodes, D. & Klug, A. Nature 292, 378–380 (1981).

    Article  ADS  CAS  Google Scholar 

  30. Peck, L. J. & Wang, J. C. Nature 292, 375–378 (1981).

    Article  ADS  CAS  Google Scholar 

  31. Beaucage, S. L. & Caruthers, M. H. Tetrahedron Lett. 22, 1859–1862 (1981).

    Article  CAS  Google Scholar 

  32. Sinha, N. D., Biernat, J., McManus, J. & Köster, H. Nucleic Acids Res. 12, 4539–4557 (1984).

    Article  CAS  Google Scholar 

  33. Milligan, J. F., Groebe, D. R., Witherell, G. & Uhlenbeck, O. C. Nucleic Acids Res. 21, 8783–8798 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharyya, A., Murchie, A. & Lilley, D. RNA bulges and the helical periodicity of double-stranded RNA. Nature 343, 484–487 (1990). https://doi.org/10.1038/343484a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/343484a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing