Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Differential expression of genes encoding α, β and γ retinoic acid receptors and CRABP in the developing limbs of the mouse

Abstract

RETINOIC acid has profound effects on vertebrate limb morphogenesis (refs 1–6, reviewed in refs 7–9), including in the mouse, where it can act as a teratogen generating phocomelia and bone defects10–12. A retinoic acid gradient13–15, possibly amplified by a graded distribution of cellular retinoic acid-binding protein (CRABP) 16, could provide positional information across the antero-posterior axis of the chick limb bud. The discovery of nuclear retinoic acid receptors (RARs) 17–22 acting as retinoic acid-inducible enhancer factors (reviewed in refs 23,24) provided a basis for understanding how retinoic acid signals could be transduced at the level of gene expression25. We have now used in situ hybridization to study the distribution of messenger RNA transcripts of the three murine receptors (mRARs) and CRABP during mouse limb development. Both mRARoα and mRARγ transcripts, but not those for mRARβ, are present and uniformly distributed in the limb bud at day 10 post-coitum, whereas CRABP transcripts have a graded proximo-distal distribution, indicating that differential expression of CRABP, but not of mRARα or mRARγ, could participate in the establishment of the morphogenetic field. At later stages, mRARγ transcripts become specific to the cartilage cell lineage and to the differentiating skin and mRARβ transcripts are mostly restricted to the interdigital mesenchyme. CRABP transcripts, however, are excluded from regions expressing mRARγ; and mRARβ. These results indicate that all three RARs and CRABP have specific functions during morphogenesis and differentiation of the mouse limb.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Maden, M. Nature 295, 672–675 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Thorns, S. D. & Stocum, D. L. Devl Biol. 103, 319–328 (1984).

    Article  Google Scholar 

  3. Scadding, S. R. & Maden, M. J. embryol. exp. Morphol. 91, 35–53 (1986).

    CAS  PubMed  Google Scholar 

  4. Tickle, C., Alberts, B. M., Wolpert, L. & Lee, J. Nature 296, 564–565 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Summerbell, D. J. Embryol. exp. Morphol. 78, 269–289 (1983).

    CAS  PubMed  Google Scholar 

  6. Tickle, C., Lee, J. & Eichele, G. Devl Biol. 109, 82–95 (1985).

    Article  CAS  Google Scholar 

  7. Maden, M. Trends Genet. 1, 103–107 (1985).

    Article  CAS  Google Scholar 

  8. Brockes, J. P. Neuron 2, 1285–1294 (1989).

    Article  CAS  Google Scholar 

  9. Eichele, G. Trends Genet. 5, 246–251 (1989).

    Article  CAS  Google Scholar 

  10. Kochhar, D. M. Teratology 7, 289–299 (1973).

    Article  CAS  Google Scholar 

  11. Satre, M. A. & Kochhar, D. M. Devl Biol. 133, 529–536 (1989).

    Article  CAS  Google Scholar 

  12. Sulik, K. K., Johnston, M. C. & Dehart, D. B. Teratology 35, 32A (1987).

    Google Scholar 

  13. Thaller, C. & Eichele, G. Nature 327, 625–628 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Slack, J. M. W. Nature 327, 553–554 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Thaller, C. & Eichele, G. Development 103, 473–483 (1988).

    CAS  PubMed  Google Scholar 

  16. Maden, M., Ong, D. E., Summberbell, D. & Chytil, F. Nature 335, 733–735 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Petkovich, M., Brand, N. J., Krust, A. & Chambon, P. Nature 330, 444–450 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Giguere, V., Ong, E. S., Segui, P. & Evans, R. M. Nature 330, 624–629 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Brand, N. et al. Nature 332, 850–853 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Benbrook, D., Lernhardt, E. & Pfahl, M. Nature 333, 669–672 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Zelent, A., Krust, A., Petkovich, M., Kastner, P. & Chambon, P. Nature 339, 714–717 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Krust, A., Kastner, P., Petkovich, M., Zelent, A. & Chambon, P. Proc. natn. Acad. Sci. U.S.A. 86, 5310–5314 (1989).

    Article  ADS  CAS  Google Scholar 

  23. Green, S. & Chambon, P. Trends genet. 4, 309–314 (1988).

    Article  CAS  Google Scholar 

  24. Evans, R. M. Science 240, 889–895 (1988).

    Article  ADS  CAS  Google Scholar 

  25. Robertson, M. Nature 330, 420–421 (1987).

    Article  ADS  CAS  Google Scholar 

  26. Stoner, C. M. & Gudas, L. J. Cancer Res. 49, 1497–1504 (1989).

    CAS  PubMed  Google Scholar 

  27. Ruberte, E. et al. Development (in the press).

  28. Gallandre, F. & Kistler, A. Wilhelm Roux Arch. dev. Biol. 189, 25–33 (1980).

    Article  CAS  Google Scholar 

  29. Kochhar, D, M., Penner, J. D. & Tellone, C. Teratog. Carcinog. Mutagen. 4, 377–387 (1984).

    Article  CAS  Google Scholar 

  30. Shapiro, S. S. in Retinoids and Cell Differentiation (ed. H. I. Sherman) 30–55 (1985).

    Google Scholar 

  31. Menkes, B. & Ilies, A. Revue rom. embryol. Cytol. 2, 161–172 (1965).

    Google Scholar 

  32. Kapan, R., Traska, G. & Fuchs, E. J. cell. biol. 105, 427–440 (1987).

    Article  Google Scholar 

  33. Kapan, R. & Fuchs, E. J. cell. Biol. 109, 295–307 (1989).

    Article  Google Scholar 

  34. Green, S., Issemann, I. & Scheer, E. Nucleic Acids Res. 16, 369–372 (1988).

    Article  CAS  Google Scholar 

  35. Dollé, P. & Duboule, D. Embo J. 8, 1507–1515 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dollé, P., Ruberte, E., Kastner, P. et al. Differential expression of genes encoding α, β and γ retinoic acid receptors and CRABP in the developing limbs of the mouse. Nature 342, 702–705 (1989). https://doi.org/10.1038/342702a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342702a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing