Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

X-ray analysis of HIV-1 proteinase at 2.7 Å resolution confirms structural homology among retroviral enzymes

Abstract

KNOWLEDGE of the tertiary structure of the proteinase from human immunodeficiency virus HIV-1 is important to the design of inhibitors that might possess antiviral activity and thus be useful in the treatment of AIDS1. The conserved Asp–Thr/Ser–Gly sequence in retroviral proteinases2 suggests that they exist as dimers similar to the ancestor proposed for the pepsins3–5. Although this has been confirmed by X-ray analyses of Rous sarcoma virus and HIV-1 proteinases6,7, these structures have overall folds that are similar to each other only where they are also similar to the pepsins8. We now report a further X-ray analysis of a recombinant HIV-1 proteinase at 2.7 Å resolution. The polypeptide chain adopts a fold in which the N- and C-terminal strands are organized together in a four-stranded β-sheet. A helix precedes the single C-terminal strand, as in the Rous sarcoma virus proteinase6 and also in a synthetic HIV-1 proteinase, in which the cysteines have been replaced by α-aminobutyric acid9. The structure reported here provides an explanation for the amino acid invariance amongst retroviral proteinases, but differs from that reported earlier7 in some residues that are candidates for substrate interactions at P3, and in the mode of intramolecular cleavage during processing of the polyprotein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kohl, N. E. et al. Proc. natn. Acad. Sci. U.S.A. 85, 4686–4690 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Toh, H. Ono, M., Saigo, K. & Miyata, T. Nature 315, 691 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Tang, J., James, M. N. G., Hau, I.-N., Jenkins, J. A. & Blundell, T. L. Nature 271, 618–621 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Pearl, L. H. & Taylor, W. R. Nature 329, 351–354 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Blundell, T. L. et al. Eur. J. Biochem. 172, 513–520 (1988).

    Article  CAS  Google Scholar 

  6. Miller, M., Jaskolski, M., Rao, J. K. M., Leis, J. & Wlodawer, A. Nature 337, 576–579 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Navia, M. A. et al. Nature 337, 615–620 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Blundell, T. L. & Pearl, L. H. Nature 337, 596–597 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Wlodawer, A. et al. Science 245, 616–621 (1989).

    Article  ADS  CAS  Google Scholar 

  10. McKeever, B. M. et al. J. biol. Chem. 264, 1919–1921 (1989).

    CAS  PubMed  Google Scholar 

  11. Blundell, T. L., Jenkins, J. A., Pearl, L.-H., Sewell, T. & Pedersen, V. in Aspartic Proteinases and Their Inhibitors (ed. Kostka, V.) 151–161 (de Gruyter, Berlin, 1985).

    Google Scholar 

  12. James, M. N. G. & Sielecki, A. J. molec. Biol. 163, 299–361 (1983).

    Article  CAS  Google Scholar 

  13. Pearl, L. H. & Blundell, T. L. FEBS Lett. 174, 96–101 (1984).

    Article  CAS  Google Scholar 

  14. Bott, R., Subramanian, E. & Davies, D. R. Biochemistry 21, 6956–6962 (1982).

    Article  CAS  Google Scholar 

  15. James, M. N. G., Sielecki, A. R., Salituro, F., Rich, D. H. & Hofmann, T. Proc. natn. Acad. Sci. U.S.A. 79, 6137–6142 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Blundell, T. L. et al. Biochemistry 26, 5585–5590 (1987).

    Article  CAS  Google Scholar 

  17. Weber, I. T. et al. Science 243, 928–931 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Ratner, L. et al. Nature 313, 277–284 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Franke, A. E. Eur. Patent 0147178 (1985).

  20. Haneef, I., Moss, D. S., Stanford, M. J. & Borkakoti, N. Acta crystallogr. A41, 426–433 (1985).

    Article  CAS  Google Scholar 

  21. Jones, T. A. J. appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapatto, R., Blundell, T., Hemmings, A. et al. X-ray analysis of HIV-1 proteinase at 2.7 Å resolution confirms structural homology among retroviral enzymes. Nature 342, 299–302 (1989). https://doi.org/10.1038/342299a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342299a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing