Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Telemetered in vivo strain analysis of locomotor mechanics of brachiating gibbons

Abstract

THE slender elongated form that is characteristic of the forelimb long bones of gibbons (Hylobates) has long been attributed to their functional adaptation to habitual armswinging locomotion1–3, although potential selective advantages of this morphology for brachiation have yet to be demonstrated. If the forces exerted on the limb skeleton during brachiation indeed differ greatly from those of other locomotor modes, then the changes in skeletal loading accompanying a shift in locomotor behaviour could favour alterations in skeletal morphology in brachiating lineages. In vivo skeletal strain patterns recorded by using radiotelemetry during brachiation indicate that the forelimb bones of the gibbon are loaded in substantial tension and show reduced bending and compression in comparison with those of other mammals. We suggest that this unique loading regime could have contributed to the evolution of the distinctive morphology of hylobatid limbs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Keith, A. J. Anat. 37, 18–40 (1903).

    Google Scholar 

  2. Andrews, P. & Groves, C. E. in Gibbon and Siamang (ed. Rumbaugh, D. M.) 167–218 (Karger, Basel, 1976).

    Google Scholar 

  3. Preuschoft, H. & Demes, B. in Size and Scaling in Primate Biology (ed. Jungers, W. L.) 383–399 (Plenum, New York, 1985).

    Book  Google Scholar 

  4. Fleagle, J. G. Nature 248, 259–260 (1974).

    Article  ADS  CAS  Google Scholar 

  5. Preuschoft, H. & Demes, B. in The Lesser Apes: Evolutionary and Behavioral Biology (eds Preuschoft, H., Chivers, D. J., Brockelman, W. V. & Creel, N.) (Edinburgh University Press, 1984).

    Google Scholar 

  6. Kummer, B. Anthrop. Anz. 32, 74–82 (1970).

    Google Scholar 

  7. Oxnard, C. E. The Order of Man (Yale University Press, New Haven, 1984).

    Google Scholar 

  8. Currey, J. D. The Mechanical Adaptations of Bones (Princeton University Press, New Jersey, 1984).

    Book  Google Scholar 

  9. Biewener, A. A., Thomason, J., Goodship, A. E. & Lanyon, L. E. J. Biomech. 16, 565–576 (1983).

    Article  CAS  Google Scholar 

  10. Lanyon, L. E. & Bourne, S. J. Bone Jt Surg. A61, 263–273 (1979).

    Article  CAS  Google Scholar 

  11. Biewener, A. A., Swartz, S. M. & Bertram, J. E. A. Calcif. Tissue Int. 39, 390–395 (1986).

    Article  CAS  Google Scholar 

  12. Biewener, A. A. & Taylor, C. R. J. exp. Biol. 123, 383–400 (1986).

    CAS  PubMed  Google Scholar 

  13. Wainwright, S. A., Biggs, W. D., Currey, J. D. & Gosline, J. M. Mechanical Design in Organisms (Wiley, New York, 1976).

    Google Scholar 

  14. Swartz, S. M. The Biomechanics and Structural Design of the Forelimb of Brachiating Primates (The University of Chicago Press, 1988).

    Google Scholar 

  15. Dally, J. W. & Riley, W. F. Experimental Stress Analysis (McGraw-Hill, 1978).

    Google Scholar 

  16. Rubin, C. T. & Lanyon, L. E. J. exp. Biol. 101, 187–212 (1982).

    CAS  PubMed  Google Scholar 

  17. Bertram, J. E. A. & Biewener, A. A. J. theor. Biol. 131, 75–92 (1988).

    Article  CAS  Google Scholar 

  18. Jungers, W. L. & Stern, J. T. Jr Science 208, 617–619 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Jungers, W. L. & Stern, J. T. Jr Int. J. Primat. 2, 18–33 (1981).

    Google Scholar 

  20. Jungers, W. L. & Stern, J, T. Jr in The Lesser Apes: Evolutionary and Behavioral Biology (eds Preuschoft, H., Chivers, D. J., Brockelman, W. V. & Creel, N.) 119–134 (Edinburgh University Press, 1984).

    Google Scholar 

  21. Avis, V. Southw. J. Anthrop. 18, 119–148 (1962).

    Article  Google Scholar 

  22. Jenkins, F. A. Jr, Bombroski, P. J. & Gordon, E. P. Am. J. phys. Anthrop. 48, 65–76 (1978).

    Article  Google Scholar 

  23. Jenkins, F. A. Jr Symp. zool. Soc. Lond. 48, 429–451 (1981).

    Google Scholar 

  24. Lanyon, L. E. & Baggot, D. G. J. Bone Jt Surg. B58, 436–443 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swartz, S., Bertram, J. & Biewener, A. Telemetered in vivo strain analysis of locomotor mechanics of brachiating gibbons. Nature 342, 270–272 (1989). https://doi.org/10.1038/342270a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342270a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing