Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Purified inositol 1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles

Abstract

INOSITOL 1,4,5-trisphosphate (Ins (1,4,5)P3), a second messenger molecule involved in actions of neurotransmitters, hormones and growth factors, releases calcium from vesicular non-mitochondrial intracellular stores1 An Ins(l,4,5)P3 binding protein, purified from brain membranes2, has been shown to be phosphorylated by cyclic-AMP-dependent protein kinase3 and localized by immunohistochemical techniques to intracellular particles associated with the endoplasmic reticulum4. Although the specificity of the Ins(l,4,5)P3 binding protein for inositol phosphates and the high affinity of the protein for Ins(l,4,5)P3 indicate that it is a physiological Ins(l,4,5)P3 receptor mediating calcium release, direct evidence for this has been difficult to obtain. Also, it is unclear whether a single protein mediates both the recognition of Ins(l,4,5)P3 and calcium transport or whether these two functions involve two or more distinct proteins. In the present study we report reconstitution of the purified Ins(l,4,5)P3 binding protein into lipid vesicles. We show that Ins(l,4,5)P3 and other inositol phosphates stimulate calcium flux in the reconstituted vesicles with potencies and specificities that match the calcium releasing actions of Ins(l,4,5)P3. These results indicate that the purified Ins(l,4,5)P3 binding protein is a physiological receptor responsible for calcium release.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berridge, M. J. A. Rev. Biochem. 56, 159–193 (1987).

    Article  CAS  Google Scholar 

  2. Supattapone, S., Worley, P. F., Baraban, J. M. & Snyder, S. H. J. biol. Chem. 263, 1530–1534 (1988).

    CAS  PubMed  Google Scholar 

  3. Supattapone, S. et al. Proc. natn. Acad. Sci. U.S.A. 85, 8747–8750 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Ross, C. A. et al. Nature 339, 468–470 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Jones, O. T., Earnest, J. P. & McNamee, M. G. in Biological Membranes: A Practical Approach (eds Findlay, J. B. C. & Evans, W. H. (IPL, Oxford, 1987).

    Google Scholar 

  6. Huganir, R. & Racker, E. J. biol. Chem. 257, 9372–9378 (1982).

    CAS  PubMed  Google Scholar 

  7. Worley, P. F. et al. J. biol. Chem. 262, 12132–12136 (1987).

    CAS  PubMed  Google Scholar 

  8. Hill, T., Berggren P. O. & Boynton, A. Biochem. biophys. Res. Commun. 149, 897–901 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Cullen, P. J., Comerford, J. G. & Dawson, A. P. FEBS Lett. 228, 57–59 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Nilsson, T., Zwiller, J., Boynton, A. L. & Berggren, P. O. FEBS Lett. 229, 211–214 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Joseph, S. K. & Rice, H. L. Molec. Pharm. 35, 355–359 (1989).

    CAS  PubMed  Google Scholar 

  12. Ghosh, T. K. et al. J. biol. Chem. 263, 11075–11079 (1988).

    CAS  PubMed  Google Scholar 

  13. Guillemette, G., Lamontagne, S., Boulay, G. & Mouillac, B. Molec. Pharm. 35, 339–344 (1989).

    CAS  PubMed  Google Scholar 

  14. Ghosh, T. K., Mullaney, M. M., Tarazi, F. I. & Gill, D. L. Nature 340, 236–239 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Irvine, R. F. Biochem. Soc. Trans. 17, 6–9 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Nahorski, S. R. Trends pharm. Sci. 10, 139–144 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Barnard, E. A., Darlison, M. G. & Seeburg, P. Trends Neurosci. 10, 502–509 (1987).

    Article  CAS  Google Scholar 

  18. Inui, M., Saito, A. & Fleischer, S. J. biol. Chem. 262, 1740–1747 (1987).

    CAS  PubMed  Google Scholar 

  19. Lai, G. A., Erickson, H. P., Roussear, D., Liu, Q-Y. & Meissner, G. Nature 331, 315–319 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Imagana, T., Smith, J. S., Coronado, R. & Campbell, K. P. J. biol. Chem. 262, 16636–16643 (1987).

    Google Scholar 

  21. Takeshima, H. et al. Nature 339, 439–445 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Bradford, M. M. Analyt. Biochem. 72, 248–254 (1976).

    Article  CAS  PubMed  Google Scholar 

  23. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferris, C., Huganir, R., Supattapone, S. et al. Purified inositol 1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles. Nature 342, 87–89 (1989). https://doi.org/10.1038/342087a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342087a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing