Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Polarized light in high-redshift radio galaxies

Abstract

HIGH-redshift radio galaxies are characterized by ultraviolet excesses1,2 associated with elongated continuum and emission-line structures aligned along their radio axes3,4. Commonly, these properties are interpreted in terms of jet-induced star formation. However, observations of a blue, polarized continuum knot in the low-redshift radio galaxy PKS2152 — 69 have suggested an alternative beaming/scattering model5,6. To test this model we have obtained imaging-polarimetry observations of two high-redshift radio galaxies: 3C277.2 (z = 0.766) and 3C368 (z = 1.132). We find that both sources are strongly linearly polarized at ultraviolet rest wavelengths, with E-vectors within 25° of perpendicular to the axis of the extended continuum and radio structures. This implies that a large proportion of the ultraviolet light in these objects does not come directly from stars and we suggest it is scattered radiation from the nucleus. These observations also have important implications for beaming models of the active nuclei and for our understanding of the evolution of the host galaxies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lilly, S. J. & Longair, M. S. Mon. Not. R. astr. Soc. 211, 833–855 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Dunlop, J. S., Guiderdoni, B., Rocca-Volmerange, B., Peacock, J. A. & Longair, M. S. Mon. Not. R. astr. Soc. (in the press).

  3. McCarthy, P. J., van Breugel, W., Spinrad, H. & Djorgovski, S. Astrophys. J. 321, L29–L33 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Chambers, K. C., Miley, G. K. & van Breugel, W. Nature 329, 604–606 (1987).

    Article  ADS  Google Scholar 

  5. di Serego Alighieri, S., Binette, L., Courvoisier, T. J.-L., Fosbury, R. A. E. & Tadhunter, C. N. Nature 334, 591–593 (1988).

    Article  ADS  Google Scholar 

  6. Tadhunter, C. N., Fosbury, R. A. E. & di Serego Alighieri, S. in BL Lac Objects (ed. Maraschi, L. et al.) (Springer, Berlin, 1989).

    Google Scholar 

  7. Lilly, S. J., Longair, M. S. & McLean, I. S. Nature 301, 488–491 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Le Fèvre, O., Hammer, F. & Jones, J. Astrophys. J. 331, L73–L76 (1988).

    Article  ADS  Google Scholar 

  9. De Young, D. S. Astrophys. J. 342, L59–L62 (1989).

    Article  ADS  Google Scholar 

  10. Rees, M. J. Mon. Not. R. astr. Soc. 239, 1P–4P (1989).

    Article  ADS  Google Scholar 

  11. van Breugel, W., Filippenko, A. V., Heckman, T. & Miley, G. Astrophys. J. 293, 83–93 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Simkin, S. M., Bicknell, G. V. & Bosma, A. Astrophys. J. 277, 513–525 (1984).

    Article  ADS  CAS  Google Scholar 

  13. di Serego Alighieri, S. in Proc. 1st ESO/ST-ECF Data Analysis Workshop (eds Grosbøl, P. et al.) (in the press).

  14. Hiltner, W. A. Astrophys. J. Suppl. Ser. 2, 389–403 (1956).

    Article  ADS  Google Scholar 

  15. Burstein, D. & Heiles, C. Astr. J. 87, 1167–1184 (1982).

    Article  ADS  Google Scholar 

  16. Mathewson, D. S. & Ford, V. L. Mon. Not. R. astr. Soc. 74, 139–182 (1970).

    ADS  Google Scholar 

  17. Djorgovski, S., Spinrad, H., Pedelty, J., Rudnick, L. & Stockton, A. Astr. J. 93, 1307–1317 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Antonucci, R. R. J. Astrophys. J. 278, 499–520 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Angel, J. P. R. & Stockman, H. S. A. Rev. Astr. Astrophys. 18, 321–361 (1980).

    Article  ADS  CAS  Google Scholar 

  20. Pedelty, J. A., Rudnick, L., McCarthy, P. J. & Spinrad, H. Astr. J. 97, 647–665 (1989).

    Article  ADS  Google Scholar 

  21. Chambers, K. C., Miley, G. K. & Joyce, R. R. Astrophys. J. 329, L75–L79 (1988).

    Article  ADS  Google Scholar 

  22. Rawlings, S. & Eales, S. A. in Proc. 2nd Wyoming Conf. Interstellar Medium in External Galaxies (in the press).

  23. Jackson, N., Browne, I. W. A., Murphy, D. W. & Saikia, D. J. Nature 338, 485–487 (1989).

    Article  ADS  Google Scholar 

  24. Barthel, P. D. Astrophys. J. 336, 606–611 (1989).

    Article  ADS  Google Scholar 

  25. Syunyaev, R. A. Soviet Astr. Lett. 8, 175–178 (1982).

    ADS  Google Scholar 

  26. Fabian, A. C. Mon. Not. R. astr. Soc. 238, 41p–44p (1989).

    Article  ADS  Google Scholar 

  27. Laing, R. A., Longair, M. S., Riley, J. M., Kibblewhite, E. J. & Gunn, J. E. Mon. Not. R. astr. Soc. 183, 547–548 (1978).

    Article  ADS  Google Scholar 

  28. Wardle, J. F. C. & Kronberg, P. P. Astrophys. J. 194, 249–255 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

di Serego Alighieri, S., Fosbury, R., Quinn, P. et al. Polarized light in high-redshift radio galaxies. Nature 341, 307–309 (1989). https://doi.org/10.1038/341307a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341307a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing