Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Three-dimensional structure of Escherichia coli RNA polymerase holoenzyme determined by electron crystallography

Abstract

DURING transcription in E. coli, the DNA-dependent RNA polymerase locates specific promoter sequences in the DNA template, melts a small region containing the transcription start site, initiates RNA synthesis, processively elongates the transcript, and finally terminates and releases the RNA product. Each step is regulated by interactions between the polymerase, the DNA, the nascent RNA, and a variety of regulatory proteins and ligands1-3. The E. coli enzyme contains a catalytic core of two α-subunits, one β-and one β′-subunit, with relative molecular masses (Mr) of 36,512, 150,619 and 155,162, respectively2. The holoenzyme has an additional regulatory subunit, normally σ-70, of Mr 70,236. Preparations may also contain the ω-subunit (Mr10,000), which can be removed without affecting any known properties of the enzyme2. Because the amino-acid sequences of the β- and β′-subunits are homologous to those of the largest subunits of the yeast, Drosophila and murine RNA polymerases4-7, it seems likely that essential features of the three-dimensional structure and catalytic mechanism of RNA polymerase are also conserved across species. Crystals of RNA polymerase suitable for X-ray analysis have not yet been obtained, but two-dimensional crystals of E. coli RNA polymerase holoenzyme can be grown on positively charged lipid layers8. Electron microscopy of these crystals in negative stain shows the enzyme in projection as an irregularly shaped complex 100 x 100 x 160 Å in size. We have now determined the three-dimensional structure by electron microscopy of negatively stained, two-dimensional crystals tilted at various angles to the incident electron beam9. We find a structure in RNA polymerase similar to the active-site cleft of DNA polymerase I (ref. 10). In the light of functional similarities between these two enzymes, together with other evidence, this probably identifies the active-site region of RNA polymerase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. von Hippel, P. H., Bear, D. G., Morgan, W. D. & McSwiggen, J. A. A. Rev. Biochem. 53, 389–446 (1984).

    Article  CAS  Google Scholar 

  2. Chamberlin, M. J. Enzymes 15, 61–86 (1982).

    Article  CAS  Google Scholar 

  3. Lewis, M. K. & Burgess, R. R. Enzymes 15, 109–153 (1982).

    Article  CAS  Google Scholar 

  4. Allison, L. A., Moyle, M., Shales, M. & Ingles, C. J. Cell 42, 599–610 (1985).

    Article  CAS  Google Scholar 

  5. Biggs, J., Searles, L. L. & Greenleaf, A. L. Cell 42, 611–621 (1985).

    Article  CAS  Google Scholar 

  6. Sweetser, D., Nonet, M. & Young, R. A. Proc. natn. Acad. Sci. U.S.A. 84, 1192–1196 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Ahearn, J. M., Bartolomei, M. S., West, M. L., Cisek, L. J. & Corden, J. L. J. biol. Chem. 262, 10695–10705 (1987).

    CAS  Google Scholar 

  8. Darst, S. A., Ribi, H. O., Pierce, D. W. & Kornberg, R. D. J. molec. Biol. 203, 269–273 (1988).

    Article  CAS  Google Scholar 

  9. Amos, L. A., Henderson, R. & Unwin, P. N. T. Prog. biophys. molec. Biol. 39, 183–231 (1982).

    Article  CAS  Google Scholar 

  10. Ollis, D. L., Brick, P., Hamlin, R., Xuong, N. G. & Steitz, T. A. Nature 313, 762–766 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Strickland, M. S., Thompson, N. E. & Burgess, R. R. Biochemistry 27, 5755–5762 (1988).

    Article  CAS  Google Scholar 

  12. Henderson, R., Baldwin, J. M., Downing, K. H., Lepault, J. & Zemlin, F. Ultramicroscopy 19, 147–178 (1986).

    Article  CAS  Google Scholar 

  13. Agard, D. A. J. molec. Biol. 167, 849–852 (1983).

    Article  CAS  Google Scholar 

  14. Tichelaar, W., Schutter, W. G., Arnberg, A. C., Van Bruggen, E. F. J. & Stender, W. Eur. J. Biochem. 135, 263–269 (1983).

    Article  CAS  Google Scholar 

  15. Fairfield, F. R., Newport, J. W., Dolejsi, M. K. & von Hippel, P. H. J. biomolec. Struct. Dyn. 1, 715–727 (1983).

    Article  CAS  Google Scholar 

  16. Gamper, H. B. & Hearst, J. E. Cell 29, 81–90 (1982).

    Article  CAS  Google Scholar 

  17. Siebenlist, u., Simpson, R. B. & Gilbert, W. Cell 20, 269–281 (1980).

    Article  CAS  Google Scholar 

  18. Kuhnke, G., Fritz, H. & Ehring, R. EMBO J. 6, 507–513 (1987).

    Article  CAS  Google Scholar 

  19. Goodsell, D. S., Miam, I. S. & Olson, A. J. J. molec. Graphics 7, 41–47 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darst, S., Kubalek, E. & Kornberg, R. Three-dimensional structure of Escherichia coli RNA polymerase holoenzyme determined by electron crystallography. Nature 340, 730–732 (1989). https://doi.org/10.1038/340730a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/340730a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing