Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Influence of coupling of sorption and photosynthetic processes on trace element cycles in natural waters

Abstract

CHEMICAL and biological processes have important roles in the transport and cycling of trace elements in natural waters1-3, but their complex interactions are often not well understood. Trace-element concentrations may, for example, be controlled by adsorption—desorption reactions at mineral surfaces, with the equilibrium strongly influenced by pH. Variations in pH due to photosynthetic activity should result in concentration fluctuations as the adsorption—desorption equilibrium shifts with pH. To investigate these interactions, we have studied the effect of diurnal cycling of pH on dissolved arsenate in a perennial stream contaminated with arsenic. As expected, a diurnal cycle in arsenate concentration was observed, but surprisingly, the arsenate cycle lags several hours behind the pH cycle. Laboratory experiments show that the lag results from a slow approach to sorption equilibrium. Our observations demonstrate that the coupling of photosynthesis and sorption processes may have an important influence on the cycling of many trace elements and emphasize the importance of understanding sorption kinetics in modelling these processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Morel, F. M. M. & Hudson, R. J. M. in Chemical Processes in Lakes (ed. Stumm, W.) 251–282 (Wiley, New York, 1985).

    Google Scholar 

  2. Ehrlich, H- L. Geomicrobiology (Marcel-Dekker, New York. 1981).

    Google Scholar 

  3. Bowen, H. J. M. Environmental Chemistry of the Elements (Academic, New York, 1979).

    Google Scholar 

  4. Dunn, I. G. Limnol. Oceanogr. 12, 151–154 (1967).

    Article  ADS  CAS  Google Scholar 

  5. Turk, J. T. Wat. Air & Soil Pollut. 37, 171–176 (1988).

    ADS  CAS  Google Scholar 

  6. McKnight, D. M., Kimball, B. A. & Bencala, K. E. Science 240, 637–640 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Moffet, J. W. & Zika, R. G. in Photochemistry of Environmental Aquatic Systems, Symp. Ser. 327 (eds Zika, R. G. & Cooper, W. J.) 116–130 (American Chemical Society, Washington, DC, 1987).

    Book  Google Scholar 

  8. Davis, J. A. & Hayes, K. F. in Geochemical Processes at Mineral Surfaces. Symp. Ser. 323 (eds Davis, J. A. & Hayes, K. F.) 2–18 (American Chemical Society, Washington, DC, 1986).

    Google Scholar 

  9. Sposito, G. A. Surface Chemistry of Soils (Oxford University Press, 1984).

    Google Scholar 

  10. Hayes, K. F. & Leckie, J. O. J. Colloid Interface Sci. 115, 564–572 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Hayes, K. F., Papelis, L. & Leckie, J. O. J. Colloid Interface Sci. 125, 717–726 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Davis, J. A. & Leckie, J. O. J. Colloid Interface Sci. 67, 90–107 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Fuller, C. C. & Davis, J. A. Geochimica cosmochimica Acta 51, 1491–1502 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Goddard, K. E. US geol. Surv. Wat. Resour. Investig. Rep. 87-4051 (US Govt Printing Office, Washington, DC, 1988).

  15. Cherry, J. A., Morel, F. M. M., Rouse, J. V., Schnoor, J. L. & Wolman, M. G. Mineral and Energy Resources Vol. 29 No. 4.1–12; No. 5.1–15; No. 6.1–15 (Colorado School of Mines, Golden, 1986).

    Google Scholar 

  16. Crecelius, E. A., Bloom, N. S., Cowan, C. E., & Jenne, E. A. Electr. Power Res. Inst. Rep. EA-4641 (Electrical Power Research Institute, Palo Alto, 1986).

  17. Ferguson, J. F. & Gavis, J. Wat. Res. 6, 1259–1274 (1972).

    Article  CAS  Google Scholar 

  18. Pierce, M. L. & Moore, C. B. Wat. Res. 16, 1247–1253 (1982).

    Article  CAS  Google Scholar 

  19. Fuller, C. C., Davis, J. A., & Claypool-Frey, R. G. in US geol. Surv. Open-File Rep. 87-764, 19–21 (US Govt Printing Office, Washington, DC, 1988).

  20. Laitinen, H. A. & Harris, W. E. Chemical Analysis 2nd edn, 166 (McGraw-Hill, New York, 1975).

    Google Scholar 

  21. Willett, I. R., Chartres, C. J. & Nguyen, T. T. J. Soil Sci. 39, 275–282 (1988).

    Article  CAS  Google Scholar 

  22. Bencala, K. E., McKnight, D. M. & Zellweger, G. W. Wat. Resour. Res. 23, 827–836 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Apte, S. C., Howard, A. G., Morris, R. J. & McCartney, M. J. Mar. Chem. 20, 119–130 (1986).

    Article  CAS  Google Scholar 

  24. Andreae, M. O. Deep Sea Res. 25, 391–402 (1978).

    Article  ADS  CAS  Google Scholar 

  25. Ficklin, W. H. Talanta 30, 371–373 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuller, C., Davis, J. Influence of coupling of sorption and photosynthetic processes on trace element cycles in natural waters. Nature 340, 52–54 (1989). https://doi.org/10.1038/340052a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/340052a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing