Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The CD2 antigen associates with the T-cell antigen receptor CD3 antigen complex on the surface of human T lymphocytes

Abstract

T LYMPHOCYTES can be activated by various stimuli directed either against the T-cell antigen receptor–CD3 antigen complex (Ti–CD3) or the CD2 molecule; see ref.1 for a review. Activation signals generated by antigen binding to the antigen-specific α/β heterodimer (Ti) are thought to be transduced via the invariant CD3 γ, ε and δchains, and the associatedζ and η subunits2,3. The physiological role of the interaction of CD2 with its homologous cell-surface associated ligand LFA-34,5remains to be fully elucidated. It has been suggested that CD2 regulates an antigen-independent pathway of activation6or that signals delivered via CD2 are an integral part of the antigen-specific pathway7–10. Several recent studies have indicated a requirement for the Ti–CD3 complex in CD2 signalling. Thus, mutant T-cell lines expressing CD2, but not Ti–CD3, on the cell surface cannot be activated via the CD2 molecules9,10. Functional interaction between the Ti–CD3 complex and the CD2 antigen suggests that these T-lymphocyte cell-surface structures are physically associated. Here we use a digitonin-based solubilization procedure to explore this possibility and show that 40% of the cell-surface CD2 molecules can be specifically co-precipitated in association with the Ti–CD3 complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Möller, G. (ed) Immun. Rev. 95 (Munksgaard, Copenhagen, 1987).

  2. Clevers, H., Alarcon, B., Wiseman, T. & Terhorst, C., A. Rev. Immun. 6, 629–662 (1988)

    Article  CAS  Google Scholar 

  3. Baniyash, M., Garcia-Morales, P., Bonifacino, J. S., Samelson, L. E. & Klausner, R. D. J. biol. Chem. 263, 9874–9878 (1988).

    CAS  PubMed  Google Scholar 

  4. Hünig, T. J. exp. Med. 162, 890–901 (1985).

    Article  Google Scholar 

  5. Selvaraj, P. et al. Nature 326, 400–403 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Meuer, S. C. et al. Cell 36, 897–906 (1984).

    Article  CAS  Google Scholar 

  7. Yang, S. Y., Chouaib, S. & Dupont, B., J. Immun. 137, 1097–1100 (1986).

    CAS  Google Scholar 

  8. Breitmeyer, J. B., Daley, J. F., Levine, H. B. & Schlossman, S. F. J. Immun. 139, 2899–2905 (1987).

    CAS  PubMed  Google Scholar 

  9. Alcover, A. et al. EMBO J. 7, 1973–1977 (1988).

    Article  CAS  Google Scholar 

  10. Bockenstedt, L. K. et al. J. Immun. 141, 1904–1911 (1988).

    CAS  PubMed  Google Scholar 

  11. Sewell, W. A., Brown, M. H., Dunne, J., Owen, M. J. & Crumpton, M. J. Proc. natn. Acad. Sci. U.S.A. 83, 8718–8722 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Brown, M. H., Sewell, W. A., Monostori, E. & Crumpton, M. J. in Leucocyte Typing III (ed. McMichael, A. J.) 110–112 (Oxford Univ. Press 1987).

    Google Scholar 

  13. Snary, D., Goodfellow, P., Bodmer, W. F. & Crumpton, M. J. Nature 258, 240–242 (1975).

    Article  ADS  CAS  Google Scholar 

  14. Cantrell, D. A., Davies, A. A. & Crumpton, M. J. Proc. natn. Acad. Sci. U.S.A. 82, 8158–8162 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Anderson, P., Morimoto, C., Breitmeyer, J. B. & Schlossman, S. F. Immun. Today 9, 199–203 (1988).

    Article  CAS  Google Scholar 

  16. Cantrell, D. A., Verbi, W., Davies, A., Parker, P. & Crumpton, M. J. Eur. J. Immun. 18, 1391–1396 (1988).

    Article  CAS  Google Scholar 

  17. Bierer, B. E., Peterson, A., Gorga, J. C., Herrmann, S. H. & Burakoff, S. J. J. exp. Med. 168, 1145–1156 (1988).

    Article  CAS  Google Scholar 

  18. Pantaleo, G. et al. J. exp. Med. 168, 13–24 (1988).

    Article  CAS  Google Scholar 

  19. Siliciano, R. F., Pratt, J. C., Schmidt, R. E., Ritz, J. & Reinherz, E. L. Nature 317, 428–430 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Williams, A. F., Barclay, A. N., Clark, S. J., Paterson, D. J. & Willis, A. C. J. exp. Med. 165, 368–380 (1987).

    Article  CAS  Google Scholar 

  21. He, Q., Beyers, A. D., Barclay, A. N. & Williams, A. F. Cell 54, 979–984 (1988).

    Article  CAS  Google Scholar 

  22. Davies, A. A. & Brown, M. H. in Lymphocytes: Practical Approach Series, (ed. Klaus, G.) 229–253 (IRL, Oxford, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, M., Cantrell, D., Brattsand, G. et al. The CD2 antigen associates with the T-cell antigen receptor CD3 antigen complex on the surface of human T lymphocytes. Nature 339, 551–553 (1989). https://doi.org/10.1038/339551a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/339551a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing