Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna

Abstract

MORE than half of all tropical soils are highly weathered, leached and impoverished, requiring the ecosystem to develop nutrient-conserving mechanisms1,2. Nutrient retention and withdrawal mechanisms are most effective in nutrient-poor systems3,4. Thus, although dry tropical forests and savanna have the potential capacity to grow at high rates5,6, this capacity is strictly limited by climate and nutrients. Our studies on these nutrient-poor ecosystems show that a reciprocal relationship exists between microbial biomass and plant growth rate. This suggests that microbial immobilization may be a main source of nutrients for the plants and may lead to nutrient conservation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sanchez, P. A. Properties and Management of Soils in the Tropics (Wiley, New York, 1976).

    Google Scholar 

  2. Jordan, C. F. Nutrient Cycling in Tropical Forest Ecosystems (Wiley, Chichester, 1985).

    Google Scholar 

  3. Chapin III, F. S. A. Rev. Ecol. Syst. 11, 233–263 (1980).

    Article  CAS  Google Scholar 

  4. Singh, J. S., Rawat, Y. S., & Chaturvedi, O. P. Nature 311, 54–56 (1984).

    Article  ADS  Google Scholar 

  5. Singh, J. S. & Yadava, P. S. Ecol. Monogr. 44, 351–376 (1974).

    Article  Google Scholar 

  6. Singh, K. P. & Misra, R. Structure and Functioning of Natural, Modified and Silvicuitural Ecosystems of Eastern Uttar Pradesh (Tech. Rep., Banaras Hindu Univ., 1979).

    Google Scholar 

  7. Benchmark Soils of India (eds Murthy, R. S., Hirekerur, L. R., Deshpande, S. B. & Venkata Rao, B. V.) (National Bureau of Soil Survey and Landuse Planning (ICAR), Nagpur, 1982).

  8. Singh, V. K. & Singh, J. S. in Environmental Degradation of Obra-Renukoot-Singrauli Area and its Impact on Natural and Derived Ecosystems (ed. Singh, J. S.) 67–83 (Tech. Rep. Banaras Hindu Univ., 1988).

    Google Scholar 

  9. Methods of Soil Analysis (ed. Black, C. A.) (Am. Soc. Agron., Monogr. 9, Pt I, Madison, Wisconsin, 1965).

  10. Jackson, M. L. Soil Chemical Analysis (Constable, London, 1958).

    Google Scholar 

  11. Standard Methods for the Examination of Water and Wastewater (Am. Pub. Health Ass., Washington, 1985).

  12. Eno, C. F. Soil Sci. Soc. Proc. Am. 24, 277–279 (1960).

    Article  ADS  CAS  Google Scholar 

  13. Srivastava, S. C. & Singh, J. S. Soil Biol. Biochem. 20, 743–747 (1988).

    Article  CAS  Google Scholar 

  14. Jenkinson, D. S. & Powlson, D. S. Soil Biol. Biochem. 8, 209–213 (1976).

    Article  CAS  Google Scholar 

  15. Brookes, P. C., Powlson, D. S. & Jenkinson, D. S. Soil Biol. Biochem. 14, 319–329 (1982).

    Article  CAS  Google Scholar 

  16. Vitousek, P. M. & Matson, P. A. Soil Biol. Biochem. 20, 361–367 (1988).

    Article  CAS  Google Scholar 

  17. Livington, G. P., Vitousek, P. M. & Matson, P. A. J. geophys. Res. 93 (D3), 1593–1599 (1988).

    Article  ADS  Google Scholar 

  18. Calder, E. A. J. Soil. Sci. 8, 60–72 (1957).

    Article  CAS  Google Scholar 

  19. Semb, G. & Robinson, J. B. D. East Afr. Agr. For. J. 34, 350–370 (1969).

    Article  Google Scholar 

  20. Dash, M. C. & Guru, B. C. Pedobiologia 20, 325–342 (1980).

    Google Scholar 

  21. Singh, J. & Mukherjee, I. N. J. Soil Biol. Ecol. 6, 104–108 (1986).

    Google Scholar 

  22. Dwivedi, B. K., Kumar, A., Shukla, R. C. & Misra, S. L. J. Soil Biol. Ecol. 7, 90–97 (1987).

    Google Scholar 

  23. Clarholm, M. Soil Biol. Biochem. 17, 181–187 (1985).

    Article  CAS  Google Scholar 

  24. Coleman, D. C. et al. Soil Organisms as Components of Ecosystems (eds Lohm, U. & Persson, T.) 299–309 (Ecol. Bull., Stockholm, 1977).

    Google Scholar 

  25. Cameron, R. S. & Posner, A. M. J. Soil Sci. 30, 565–577 (1979).

    Article  CAS  Google Scholar 

  26. Bernhard-Reversat, F. Oikos 38, 321–332 (1982).

    Article  Google Scholar 

  27. Stevenson, F. J. Cycles of Soil (Wiley, New York, 1986).

    Google Scholar 

  28. Marumoto, T., Kai, H., Yoshida, T. & Harada, T. Soil Sci. Pl. Nutr. 23, 125–134 (1977).

    Article  CAS  Google Scholar 

  29. Lathbridge, G. & Davidson, M. S. Soil Biol. Biochem. 15, 375–376 (1983).

    Article  Google Scholar 

  30. Vitousek, P. M. & Matson, P. A. Science 225, 51–52 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, J., Raghubanshi, A., Singh, R. et al. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature 338, 499–500 (1989). https://doi.org/10.1038/338499a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338499a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing