Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Upward fluxes of particulate organic matter in the deep North Pacific

Abstract

The flux of particulate matter through the oceanic water column is a primary component in elemental cycling and is generally perceived as being in one direction: downward1, 2. The organic matter constituting these particles is produced through photosynthesis in surface waters and either sinks directly as phytoplankton and products3, 4 or undergoes various trophic transformations through the water column. A large proportion of the particulate organic matter produced in surface waters is regenerated in the euphotic zone5–7. A fraction of this organic matter, however, leaves the surface waters and settles through the water column, generally decreasing in quantity and changing in quality with increasing distance from the surface8–11. Although the net transport of organic matter must be downward to fuel the lower portions of the water column, there is also an upward component to transport. Positively buoyant particles, including lipid-rich eggs, larvae and, possibly, carcasses of deep-sea animals are examples of particles which undergo upward transport12–13. A previous attempt to quantify the upward mass flux indicated rates of 1–4% of the downward mass flux14. Here we report the first evidence that there is a significant upward flux of particulate organic matter, up to 66.7% of the concurrently measured downward flux, at two stations in the deep North Pacific. Given this magnitude, the previously ignored upward flux of such organic matter must be considered in models of carbon and nitrogen cycling in the open ocean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dymond, J. & Lyle, M. Limnol. Oceanogr. 30, 699–712 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Pace, M. L. et al. Nature 325, 803–804 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Bienfang, P. K. Mar. Biol. 61, 69–77 (1980).

    Article  Google Scholar 

  4. Zeitschel, B. Proc. R. Soc. Edin. 88B, 207–220 (1986).

    Google Scholar 

  5. Eppley, R. W. & Peterson, B. J. Nature 282, 677–680 (1979).

    Article  ADS  Google Scholar 

  6. Baker, E. T. et al. Estuar. Coastal Shelf Sci. 21, 859–877 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Gardner, W. D. et al. Mar. Geol. 65, 199–242 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Knauer, G. A. & Martin, J. H. Limnol. Oceanogr. 26, 181–186 (1981).

    Article  ADS  Google Scholar 

  9. Lee, C. & Cronin, C. J. Mar. Res. 40, 227–251 (1982).

    CAS  Google Scholar 

  10. Lorenzen, C. J. et al. Deep-Sea Res. 30, 639–643 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Matsueda, H. & Handa, N. Mar. Chem. 20, 179–195 (1986).

    Article  CAS  Google Scholar 

  12. Yayanos, A. A. & Nevenzel, J. C. Naturwissenschaften 65, 255–256 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Robison, B. H. & Lancraft, T. M. Naturwissenschaften 71, 322–323 (1984).

    Article  ADS  Google Scholar 

  14. Simoneit, B. R. T. et al. Naturwissenschaften 73, 322–325 (1986).

    Article  ADS  Google Scholar 

  15. Smith, K. L. Jr. Limnol. Oceanogr. 32, 201–220 (1987).

    Article  ADS  Google Scholar 

  16. Brinton, E. J. Crust. Biol. 7, 636–666 (1987).

    Article  Google Scholar 

  17. Nemoto, T. et al. Bull. Plankt. Soc. Jap. 24, 36–43 (1977).

    Google Scholar 

  18. Mauchline, J. & Fisher, L. R. Adv. Mar. Biol. 7, 1–454 (1969).

    Article  Google Scholar 

  19. Honjo, S. J. Mar. Res. 38, 53–97 (1980).

    CAS  Google Scholar 

  20. Tsunogai, S. & Noriki, S. Deep-Sea Res. 34, 755–767 (1987).

    Article  ADS  Google Scholar 

  21. Mauchline, J. Mar. Biol. 90, 19–26 (1985).

    Article  Google Scholar 

  22. Merrett, R. Deep-Sea Res. 25, 147–160 (1978).

    Article  ADS  Google Scholar 

  23. Marshall, N. B. Developments in Deep-Sea Biology (Blandford, Poole, 1979).

    Google Scholar 

  24. Tyler, P. A. & Gage, J. D. Deep-Sea Res. 31, 387–402 (1984).

    Article  ADS  Google Scholar 

  25. Colman, J. G. et al. J. Mar. Biol. Ass. U.K. 66, 951–965 (1986).

    Article  Google Scholar 

  26. Killingley, J. S. & Rex, M. A. Deep-Sea Res. 32, 809–818 (1985).

    Article  ADS  Google Scholar 

  27. Bruland, K. W. et al. Earth planet. Sci. Lett. 53, 400–408 (1981).

    Article  ADS  CAS  Google Scholar 

  28. Conover, W. J. Practical Nonparametric Statistics (Wiley, New York, 1980).

    Google Scholar 

  29. Gardner, W. D. J. Mar. Res. 38, 17–39 (1980).

    Google Scholar 

  30. Smith Jr, K. L. Deep-Sea Res. 36 (in the press).

  31. Knauer, G. A. et al. J. Mar. Res. 42, 445–462 (1984).

    Article  CAS  Google Scholar 

  32. Williams, P. M. & Druffel, E. R. M. Oceanography 1, 14–17 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, K., Williams, P. & Druffel, E. Upward fluxes of particulate organic matter in the deep North Pacific. Nature 337, 724–726 (1989). https://doi.org/10.1038/337724a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337724a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing