Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Aminoacylation of RNA minihelices with alanine

Abstract

The genetic code is determined by both the specificity of the triplet anticodon of tRNAs for codons in mRNAs and the specificity with which tRNAs are charged with amino acids. The latter depends on interactions between tRNAs and their charging enzymes, and an advance in understanding such interactions was provided recently by the demonstration that a major determinant of the identity of alanine tRNA is located in the amino-acid acceptor helix. Multiple substitutions in many distinct parts of the molecule do not prevent aminoacylation with alanine1. Substitution of the G3·U70 base pair with G3·C70 or A3·U70 in the acceptor helix prevents aminoacylation in vivo and in vitro, however1, and the introduction of this base pair into tRNACys (ref. 1) or tRNAPhe (refs 1, 2) enables both to accept alanine. The importance of a single base pair in the acceptor helix and the results of recent footprinting experiments3 prompted us to investigate the possibility that a minihelix, composed only of the amino-acid acceptor-TΨC helix, could be a substrate for alanine tRNA synthetase. We show here that a synthetic hairpin minihelix can be enzymatically aminoacylated with alanine. Alanine incorporation requires a single G·U base pair, and occurs in helices that otherwise differ significantly in sequence. Aminoacylation can be achieved with only seven base pairs in the helix.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hou, Y.-M. & Schimmel, P. Nature 333, 140–145 (1988).

    Article  ADS  CAS  Google Scholar 

  2. McClain, W. H. & Foss, K. Science 240, 793–796 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Park, S. J. & Schimmel, P. J. biol. Chem. 263, 16527–16530 (1988).

    CAS  PubMed  Google Scholar 

  4. Sprinzl, M., Hartmann, T., Meissner, F., Moll, H. & Vorderwullbecke, T. Nucleic Acids Res. 15, r53–rl88 (1988).

    Article  Google Scholar 

  5. Park, S. J., Hou, Y.-M. & Schimmel, P. Biochemistry (in the press).

  6. Schulman, L. H. & Pelka, H. Biochemistry 24, 7309–7314 (1985).

    Article  CAS  Google Scholar 

  7. Rogers, M. J. & Soll, D. Proc. natn. Acad. Sci. U.S.A. 85, 6627–6631 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Schulman, L. H. & Pelka, H. Science 242, 765–768 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Muramatsu, T. et al. Nature 336, 179–181 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Sampson, J. K., DeRenzo, A., Behlen, L. & Uhlenbeck, O. C. Science (in the press).

  11. Imura, N., Weiss, G. B. & Chambers, R. W. Nature 222, 1147–1148 (1969).

    Article  ADS  CAS  Google Scholar 

  12. Schimmel, P. R. & Soll, D. A. Rev. Biochem. 48, 601–648 (1979).

    Article  CAS  Google Scholar 

  13. Anderson, S. et al. Nature 290, 457–465 (1981).

    Article  ADS  CAS  Google Scholar 

  14. de Bruijn, M. H. L. & Klug, A. EMBO J. 2, 1309–1321 (1983).

    Article  CAS  Google Scholar 

  15. McClain, W. H., Guerrier-Takada, C. & Altman, S. Science 238, 527–530 (1987).

    Article  ADS  CAS  Google Scholar 

  16. de Duve, C. Nature 333, 117–118 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Yarus, M. Science 240, 1751–1758 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Weiner, A. M. & Maizels, N. Proc. natn. Acad. Sci. U.S.A. 84, 7383–7387 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Fersht, A. R. et al. Biochemistry 14, 1–4 (1975).

    Article  CAS  Google Scholar 

  20. Hill, K. & Schimmel, P. Biochemistry (in the press).

  21. Jasin M., Regan, L. & Schimmel, P. J. biol. Chem 260, 2226–2230 (1985).

    CAS  PubMed  Google Scholar 

  22. Milligan, J. F., Groebe, D. R., Witherell, G. W. & Uhlenbeck, O. C. Nucleic Acids Res. 15, 8783–8798 (1987).

    Article  CAS  Google Scholar 

  23. Samson, J. & Uhlenbeck, O. C. Proc. natn. Acad. Sci. U.S.A. 85, 1033–1037 (1988).

    Article  ADS  Google Scholar 

  24. Grodberg, J. D. & Dunn, J. J. J. Bact. 170, 1245–1253 (1988).

    Article  CAS  Google Scholar 

  25. England, T. E. & Uhlenbeck, O. C. Nature 275, 560–561 (1978).

    Article  ADS  CAS  Google Scholar 

  26. Silberklang, M., Gillum, A. M. & RajBhandary, U. L. Meth Enzym. 59, 58–109 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francklyn, C., Schimmel, P. Aminoacylation of RNA minihelices with alanine. Nature 337, 478–481 (1989). https://doi.org/10.1038/337478a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337478a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing