Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The relationship of a prochlorophyte Prochlorothrix hollandicato green chloroplasts

Abstract

It is generally accepted that chloroplasts arose from one or more endosymbiotic events between an ancestral cyanobacterium and a eukaryote1. Such an origin fits well in the case of the chloroplasts of rhodophytes that, like cyanobacteria, contain chlorophyll a and phycobilin pigments2. The green chloroplasts from higher plants, green algae, and euglenoids however, contain chlorophyll b as well as chlorophyll a, and lack phycobilins. Consequently, it has been suggested that they arose independently of the rhodophyte chloroplasts, from an ancestral prokaryote containing that complement of pigments3. The 'prochlorophytes'Prochloron didemni (an exosymbiont on didemnid ascidians4,5) and Prochlorothrix hollandica(a recently discovered, free-living, filamentous form6) have been suggested to be modern counterparts of the ancestor of the green chloroplasts because they are prokaryotes that also contain both chlorophylls a and ft, and lack phycobilins7,8. We report here a 16S rRNA-based phylogenetic analysis of P. hollandica. The organism is found to fall within the cyanobacterial line of descent, as do the green chloroplasts, but it is not a specific relative of green chloroplasts. Thus, similar pigment compositions do not necessarily reflect close evolutionary relationships.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gray, M. W. & Doolittle, W. F. Microbiol. Rev. 46, 1–42 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee, R. E Phycology, 288–299 (Cambridge University Press, New York, 1980).

    Google Scholar 

  3. Raven, P. H. Science 169, 641–646 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Newcomb, E. H. & Pugh, T. D. Nature 253, 533–534 (1975).

    Article  ADS  Google Scholar 

  5. Lewin, R. A. & Cheng, L. Phycologia 14, 149–152 (1975).

    Article  Google Scholar 

  6. Burger-Wiersma, T., Veenhuis, M., Korthals, H. J., Van de Wiel, C. C. M. & Mur, L. R. Nature 320, 262–264 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Lewin, R. A. & Withers, N. W. Nature 256, 735–737 (1975).

    Article  ADS  CAS  Google Scholar 

  8. Thorne, S. W., Newcomb, E. H. & Osmond, C. B. Proc. natn. Acad. Sci. U.S.A. 74, 575–578 (1977).

    Article  ADS  CAS  Google Scholar 

  9. Seewaldt, E. & Stackebrandt, E. Nature 295, 618–620 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Stackebrandt, E., Seewaldt, E., Fowler, V. J. & Schleifer, K. H. Arch. Mikrobiol. 132, 216–217 (1982).

    Article  Google Scholar 

  11. Van Valen, L. M. Nature 298, 493–494 (1982).

    Article  ADS  Google Scholar 

  12. Patterson, G. M. L. & Withers, N. W. Science 217, 1034–1035 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Giovannoni, S. J. et al. J. Bacteriol. 170, 3584–3592 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gutell, R. R., Weiser, B., Woese, C. R. & Noller, H. F. Prog. Nucleic Acid Res. Molec. Biol. 32, 155–216 (1985).

    Article  CAS  Google Scholar 

  15. Bonen, L. & Doolittle, W. F. Proc. natn. Acad. Sci. U.S.A. 72, 2310–2314 (1975).

    Article  ADS  CAS  Google Scholar 

  16. Golding, G. B. Molec. biol. Evol. 1, 125–142 (1983).

    CAS  PubMed  Google Scholar 

  17. Olsen, G. J. Cold Spring Harbor Symp. quant. Biol. 52, 829–837 (1987).

    Article  Google Scholar 

  18. Felsenstein, J. Evolution 39, 783–791 (1985).

    Article  PubMed  Google Scholar 

  19. Hall, W. T. & Claus, G. J. Cell Biol. 19, 551–563 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Herdman, M. & Stanier, R. Y. FEMS Lett. 1, 7–12 (1977).

    Article  CAS  Google Scholar 

  21. Loffelhardt, W. et al. Ann. N.Y. Acad. Sci. 503, 550–552 (1987).

    Article  ADS  Google Scholar 

  22. Schenk, H. E. A., Bayer, M. G. & Zook, D. Ann. N.Y. Acad. Sci. 503, 151–167 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Ashlock, P. D. Syst. Zool. 28, 441–450 (1979).

    Article  Google Scholar 

  24. Lewin, R. A. Nature 261, 697–698 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Antia, N. J. Br. phycol. J. 12, 271–276 (1977).

    Article  Google Scholar 

  26. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. J. gen. Microbiol. 111, 1–61 (1979).

    Google Scholar 

  27. Lane, D. J., Field, K. G., Olsen, G. J. & Pace, N. R. Meth. Enzym. 167, 138–144 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. Olsen, G. J. Meth. Enzym. 164, 793–812 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, S., Burger-Wiersma, T., Giovannoni, S. et al. The relationship of a prochlorophyte Prochlorothrix hollandicato green chloroplasts. Nature 337, 380–382 (1989). https://doi.org/10.1038/337380a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337380a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing