Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural and functional basis for GABAA receptor heterogeneity

Abstract

When γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in vertebrate brain, binds to its receptor it activates a chloride channel. Neurotransmitter action at the GABAA receptor is potentiated by both benzodiazepines and barbiturates which are therapeutically useful drugs (reviewed in ref. 1). There is strong evidence that this receptor is heterogeneous1–7. We have previously isolated complementary DNAs encoding an α- and a β-submit and shown that both are needed for expression of a functional GABAA receptor8. We have now isolated cDNAs encoding two additional GABAA receptor α-subunits, confirming the heterogeneous nature of the receptor/chloride channel complex and demonstrating a molecular basis for it. These α-subunits are differentially expressed within the CNS and produce, when expressed with the β-subunit in Xenopus oocytes, receptor subtypes which can be distinguished by their apparent sensitivity to GABA. Highly homologous receptor subtypes which differ functionally seem to be a common feature of brain receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Olsen, R. W. & Venter, J. C. (eds) Benzodiazepine/ GABA Receptors and Chloride Channels: Structural and Functional Properties. (Liss, New York, 1986).

  2. Braestrup, C. & Nielsen, M. J. J. Neurochem. 37, 333–341 (1981).

    Article  CAS  Google Scholar 

  3. Squires, R. F. et al. Pharmac. biochem. Behav. 10, 825–830 (1979).

    Article  CAS  Google Scholar 

  4. Lippa, A. S. et al. Brain Res. Bull. 14, 189–195 (1985).

    Article  CAS  Google Scholar 

  5. Cooper, S. J., Karkham, T. C. & Estall, L. B. Trends pharmac. Set. 8, 180–184 (1987).

    Article  CAS  Google Scholar 

  6. Akaike, N., Inoue, M. & Krishtal, O. A. J. Physiol. Land. 379, 171–185 (1986).

    Article  CAS  Google Scholar 

  7. Cash, D. J. & Subbarao, K. Biochemistry 26, 7562–7570 (1987).

    Article  CAS  Google Scholar 

  8. Schofield, P. R. et al. Nature 328, 221–227 (1987).

    Article  ADS  CAS  Google Scholar 

  9. von Heijne, G. Nucleic Acids Res. 14, 4683–4690 (1986).

    Article  CAS  Google Scholar 

  10. Grenningloh, G. et al. Nature 328, 215–220 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Noda, M. et al. Nature 305, 818–823 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Nef, P., Mauron, A., Stalder, R., Alliod, C. & Ballivet, M. Proc. natn. Acad. Sci. U.S.A. 81, 7975–7979 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Shibahara, S. et al. Eur. J. Biochem. 146, 15–22 (1985).

    Article  CAS  Google Scholar 

  14. Kusano, K., Miledi, R. & Stinnakre, J. J. Physiol. 328, 143–170 (1982).

    Article  CAS  Google Scholar 

  15. Smart, T. G., Houamed, K. M., Van Renterghem, C. & Constanti, A. Biochem. Soc. Trans. 15, 117–122 (1987).

    Article  CAS  Google Scholar 

  16. Sigel, E. & Bauer, R. J. Neurosci. 8, 289–298 (1988).

    Article  CAS  Google Scholar 

  17. Smart, T. G., Constanti, A., Bilbe, G., Brown, D. A. & Barnard, E. A. Neurosci. Lett. 40, 55–59 (1983).

    Article  CAS  Google Scholar 

  18. Houamed, K. M. et al. Nature 310, 318–321 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Kuriyama, K. & Taguchi, J. J. Neurochem. 48, 1897–1903 (1987).

    Article  CAS  Google Scholar 

  20. Sweetnam, P. & Tallman, J. F. Molec. Pharmac. 29, 299–306 (1986).

    CAS  Google Scholar 

  21. Study, R. E. & Barker, J. L. Proc. natn. Acad. Sci. U.S.A. 78, 7180–7184 (1981).

    Article  ADS  CAS  Google Scholar 

  22. Unnerstall, J. R., Kuhar, M. J., Niehoff, D. L. & Palacios, J. M. J. Pharm. exp. Ther. 218, 797–804 (1981).

    CAS  Google Scholar 

  23. de Blas, A. L., Vitorica, J. & Friedrich, P. J. Neurosci. 8, 602–614 (1988).

    Article  CAS  Google Scholar 

  24. Segal, M. & Barker, J. L. J. Neurophysiol. 52, 469–487 (1984).

    Article  CAS  Google Scholar 

  25. Nathans, J., Thomas, D. & Hogness, D. S. Science 232, 193–202 (1986).

    Article  ADS  CAS  Google Scholar 

  26. Bonner, T. I., Buckley, N. J., Young, A. C. & Brann, M. R. Science 237, 527–532 (1987).

    Article  ADS  CAS  Google Scholar 

  27. Peralta, E. G. et al. EMBO J. 6, 3923–3929 (1987).

    Article  CAS  Google Scholar 

  28. Frielle, T. et al. Proc. natn. Acad. Sci. U.S.A. 84, 7920–7924 (1987).

    Article  ADS  CAS  Google Scholar 

  29. Kozak, M. Cell 44, 283–292 (1986).

    Article  CAS  Google Scholar 

  30. Barnard, E. A. & Bilbe G. in Neurochemistry: A Practical Approach (eds Turner, A. J. & Bachelard, H.) 243–270 (IRL, Oxford, 1987).

    Google Scholar 

  31. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning—A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levitan, E., Schofield, P., Burt, D. et al. Structural and functional basis for GABAA receptor heterogeneity. Nature 335, 76–79 (1988). https://doi.org/10.1038/335076a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335076a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing