Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Monomeric insulins obtained by protein engineering and their medical implications

Abstract

The use of insulin as an injected therapeutic agent for the treatment of diabetes has been one of the outstanding successes of modern medicine. The therapy has, however, had its associated problems, not least because injection of insulin does not lead to normal diurnal concentrations of insulin in the blood. This is especially true at meal times when absorption from subcutaneous tissue is too slow to mimic the normal rapid increments of insulin in the blood. In the neutral solutions used for therapy, insulin is mostly assembled as zinc-containing hexamers1 and this self-association, which under normal physiological circumstances functions to facilitate proinsulin transport, conversion and intracellular storage2, may limit the rate of absorption. We now report that it is possible, by single amino-acid substitutions, to make insulins which are essentially monomeric at pharmaceutical concentrations (0.6 mM) and which have largely preserved their biological activity. These monomeric insulins are absorbed two to three times faster after subcutaneous injection than the present rapid-acting insulins. They are therefore capable of giving diabetic patients a more physiological plasma insulin profile at the time of meal consumption.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blundell, T. et al. Adv. Protein Chem. 26, 279–402 (1972).

    Article  CAS  Google Scholar 

  2. Emdin, S. O. et al. Diabetologia 19, 174–182 (1980).

    Article  CAS  Google Scholar 

  3. Brange, J. et al. Protein Engng. 1, 238 (1987).

    Google Scholar 

  4. Brange, J. et al. Diabetes 26, Suppl. 1, 77A (1987).

    Google Scholar 

  5. Hansen, J. F. & Brange, J. Protein Engn. 1, 250 (1987).

    Google Scholar 

  6. Melberg, S. G. Protein Engn. 1, 255–256 (1987).

    Google Scholar 

  7. Brange, J. et al. Diabetologia 30, 5O3A (1987).

    Google Scholar 

  8. Baker, E. N. et al. Phil. Trans. R. Soc. (in the press).

  9. Gammeltoft, S. Physiol. Rev. 64, 1321–1378 (1984).

    Article  CAS  Google Scholar 

  10. Fischer, W. H. et al. Biol. Chem. Hoppe-Seyler 366, 521–525 (1985).

    Article  CAS  Google Scholar 

  11. Horuk, R. et al. Horon. Cell Reg. 4, 123–139 (1980).

    ADS  CAS  Google Scholar 

  12. Jones, D. H. et al. Biochemistry 24, 5852–5857 (1985).

    Article  CAS  Google Scholar 

  13. Schwartz, G. P. et al. Proc. natn. Acad. Sci. U.S.A. 84, 6408–6411 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Derewenda, U. et al. Protein Engn. 1, 238–239 (1987).

    Google Scholar 

  15. Skyler, J. S. Diabetes Care 9, 666–667 (1986).

    Article  CAS  Google Scholar 

  16. Thim, L. et al. Proc. natn. Acad. Sci. U.S.A. 83, 6766–6770 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Markussen, J. et al. in Peptides 1986. Proceedings of the Nineteenth European Peptide Symposium (ed. Theodoropoulos, D.) 189–194 (Walter de Gruyter, Berlin, 1987).

    Google Scholar 

  18. Markussen, J. et al. in Hormone Drugs (eds Gueriguian, J. L., Bransome, E.D. & Outschoorn, A. S.) 116–126 (United States Pharmacopeial Convention, Rockville, Maryland, 1982).

    Google Scholar 

  19. Maxam, A. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  20. Elias, H.-G. in Characterization of Macromolecular Structure (ed. F. McIntyre) 28–50 (National Academy of Sciences, Washington, DC, 1968).

    Google Scholar 

  21. Moody, A. J. et al. Hormone Metab. Res. 6, 12–16 (1974).

    Article  ADS  CAS  Google Scholar 

  22. Jones, T. A. J. appl. Chrystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  23. Hubbard, R. E. in Computer Aided Molecular Design (Proceedings of a 2-day conference held in London October 1984) 99–106 (Oyez, London, 1985).

    Google Scholar 

  24. Wood, S. P. et al. Eur. J. Biochem. 55, 531–542 (1975).

    Article  CAS  Google Scholar 

  25. Strickland, E. H. & Mercola, D. A. Biochemistry 15, 3875–3884 (1976).

    Article  CAS  Google Scholar 

  26. Binder, C. Acta pharmac. tox. 27, (Suppl. 2) 1–87 (1969).

    Article  Google Scholar 

  27. Ribel, U., et al. in Diabetes 1985 (eds Serrano-Rios M. & Lefèbvre, P. J.) 891–896 (Elsevier, Amsterdam, 1986).

    Google Scholar 

  28. Jørgensen, K. H. & Larsen, U. D. Diabetologia 19, 546–554 (1980).

    Article  Google Scholar 

  29. Heding, L. G. Diabetologia 8, 260–266 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brange, J., Ribel, U., Hansen, J. et al. Monomeric insulins obtained by protein engineering and their medical implications. Nature 333, 679–682 (1988). https://doi.org/10.1038/333679a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/333679a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing