Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnetic anisotropy in the electron momentum density of iron

Abstract

The existence of magnetic terms in the X-ray scattering cross-section is well established1–3, and the suggestion that X-ray studies of magnetization density would be viable dates from 19704. But despite pioneering diffraction studies with conventional X-ray sources5–7, measurements proved difficult until the advent of synchrotrons producing high X-ray flux. This is because of the weakness of these contributions and the general need to use polarized beams or polarization analysis8. In recent years, diffraction studies of rare-earth antiferromagnets9 and interfacial magnetic layers10 undertaken with synchrotron radiation have established the viability of the approach and the magnetic terms in the cross-section. In ferromagnets the demonstration of these effects has been predominantly through inelastic Compton scattering, rather than elastic Bragg diffraction studies. The Compton experiment is interpreted in terms of the electron's momentum distribution11, rather than its more familiar spatial counterpart studied in polarized neutron diffraction experiments. Here we report the measurement of the [111], [110] and [100] directional Compton profiles of the unpaired spin electrons in a single crystal of iron, obtained with a 60-keV circularly polarized beam extracted from the Dares-bury storage ring. The data provide a more critical test of band theory than is possible with polycrystalline samples (for which the scattering geometry is much simpler), and indicate the potential of this new technique.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lipps, F. W. & Tolhoek, H. A. Physica 20, 395–405 (1954).

    Article  ADS  Google Scholar 

  2. Blume, M. J. appl. Phys. 57, 3615–3618 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Lovesey, S. W. J. Phys. C20, 5625–5639 (1987).

    ADS  Google Scholar 

  4. Platzman, P. & Tzoar, N. Phys. Rev. B2, 3556–3559 (1970).

    Article  ADS  Google Scholar 

  5. deBergevin, F. & Brunel, M. Phys. Lett. A39, 141–142 (1972).

    Article  ADS  Google Scholar 

  6. deBergevin, F. & Brunel, M. Acta crystallogr. A37, 314–324 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Brunel, M. & deBergevin, F. Acta crystallogr. A37, 324–331 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Blume, M. & Gibbs, D. Phys. Rev. B37, 1779–1789 (1988).

    Article  ADS  Google Scholar 

  9. Gibbs, D., Moncton, D. E. & D'Amico, K. L. J. appl. Phys. 57, 3619–3622 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Vettier, C. et al. Phys. Rev. Lett. 56, 757–760 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Cooper, M. J. Rep. Prog. Phys. 48, 415–418 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Holt, R. S. & Cooper, M. J. Nucl. Instrum. Meth. 213, 447–452 (1983).

    Article  CAS  Google Scholar 

  13. Sakai, N. & Sekizawa, H. Phys. Rev. B36, 2164–2169 (1987).

    Article  ADS  Google Scholar 

  14. Mills, D. M. Phys. Rev. B36, 6178–6181 (1987).

    Article  ADS  Google Scholar 

  15. Cooper, M. J. et al. Phys. Rev. B34, 5984–5987 (1986).

    Article  ADS  Google Scholar 

  16. Brunel, M., Patrat, G., deBergevin, F., Rousseaux, F. & Lemmonier, M. Acta Crystallogr. A39, 84–88 (1983).

    Article  CAS  Google Scholar 

  17. Schütz, G. et al. Phys. Rev. Lett. 58, 737–740 (1980).

    Article  ADS  Google Scholar 

  18. Diana, M. & Mazzone, G. Phys. Rev. B9, 3898–3904 (1974).

    Article  ADS  Google Scholar 

  19. Rollason, A. J., Holt, R. S. & Cooper, M. J. J. Phys. F 13, 1807–1819 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Schull, C. G. & Yamada, Y. Phys. Soc. Jap. Suppl. B17, 1 (1962).

    Google Scholar 

  21. Schull, C. G. & Mook, H. A. Phys. Rev. Lett. 16, 184–186 (1966).

    Article  ADS  Google Scholar 

  22. Tawil, R. A. & Callaway, J. Phys. Rev. B7, 4242–4252 (1973).

    Article  ADS  Google Scholar 

  23. Wakoh, S. & Kubo, Y. J. magn. magn. Mater. 5, 202–211 (1977).

    Article  ADS  CAS  Google Scholar 

  24. Rollason, A. J. thesis, Univ. Warwick (1984).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, M., Collins, S., Timms, D. et al. Magnetic anisotropy in the electron momentum density of iron. Nature 333, 151–153 (1988). https://doi.org/10.1038/333151a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/333151a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing