Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Melting of vapour-absent tonalite at 10 kbar to simulate dehydration–melting in the deep crust

Abstract

Granitoids may be formed by differentiation of mantle-derived basalts, by partial fusion of crustal rocks, or by interaction of melts from these two sources. Except in special circumstances, the amount of pore fluid in the deep continental crust is likely to be so small that partial melting of rocks will take place under vapour-absent conditions, with water becoming available through dehydration–melting reactions. Here we present the results of experiments in which garnet tonalite is melted at 10 kbar in the absence of vapour. Between 825 and 900 °C the biotite melting reaction produces 20% melt; by 1,000 °C hornblende has melted, yielding 35% melt. As a melt fraction of 30–50% is required before a granodioritic melt can be segregated from its source rock21 our results imply that, whereas migmatites may be generated at typical high-grade metamorphic temperatures of 825 °C, the segregation of large-volume granitoid magmas from orthogneisses requires temperatures greater than 950 °C. In the absence of large amounts of externally-derived aqueous fluid, underplating or emplacement of hot basalt into the crust is required to raise the temperature sufficiently for magma segregation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Marshall, B. D. & De Paolo, D. J. Eos 68, 465 (1987).

    Google Scholar 

  2. Brown, G. C. & Fyfe, W. S. Contrib. Miner. Petrol. 28, 310–318 (1970).

    Article  ADS  CAS  Google Scholar 

  3. Robertson, J. K. & Wyllie, P. J. J. Geol. 79, 549–571 (1971).

    Article  ADS  CAS  Google Scholar 

  4. Huang, W. L. & Wyllie, P. J. Contrib. Miner. Petrol. 42, 1–14 (1973).

    Article  ADS  CAS  Google Scholar 

  5. Huang, W. L. & Wyllie, P. J. J. geophys. Res. 86, 1015–1079 (1981).

    Article  ADS  Google Scholar 

  6. Maaløe, S. & Wyllie, P. J. Contrib. Miner. Petrol. 52, 175–191 (1975).

    Article  ADS  Google Scholar 

  7. Naney, M. T. Am. J. Sci. 238, 993–1033 (1983).

    Article  ADS  Google Scholar 

  8. Huang, W. L. & Wyllie, P. J. Am. Miner. 71, 301–316 (1986).

    CAS  Google Scholar 

  9. Robertson, J. K. & Wyllie, P. J. Am. J. Sci. 271, 252–277 (1971).

    Article  ADS  CAS  Google Scholar 

  10. Wyllie, P. J. J. geophys. Res. 76, 1328–1338 (1971).

    Article  ADS  Google Scholar 

  11. Wyllie, P. J. Tectonophysics 13, 41–71 (1977).

    Article  ADS  Google Scholar 

  12. Burnham, W. C. in Geochemistry of Hydorthermal Ore Deposits (ed. Barnes, H. L.) 71–136 (Holt, Rinehart and Winston, 1979).

    Google Scholar 

  13. Thompson, A. B. Am. J. Sci. 282, 1567–1595 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Powell, R. J. geol. Soc. 140, 629–633 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Grant, J. A. in Migmatites (ed. Ashworth, J. R.) 86–144 (Blackie, Glasgow, 1985).

    Book  Google Scholar 

  16. Ellis, D. J. & Thompson, A. B. J. Petrol. 27(1), 91–121 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Waters, D. J. J. metamorph. Petrol. (in the press).

  18. Piwinskii, A. J. J. Geol. 76, 548–570 (1987).

    Article  ADS  Google Scholar 

  19. Peterson, J. W. & Newton, R. C. Eos 68, 451 (1987).

    Google Scholar 

  20. White, A. J. R. & Chappell, B. W. Tectonophysics 43, 7–22 (1977).

    Article  ADS  CAS  Google Scholar 

  21. Wickham, S. M. J. geol. Soc. 144(2), 281–299 (1987).

    Article  ADS  Google Scholar 

  22. Stern, C. R., Huang, W. L. & Wyllie, P. J. Earth planet. Sci. Lett. 28, 189–196 (1975).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutter, M., Wyllie, P. Melting of vapour-absent tonalite at 10 kbar to simulate dehydration–melting in the deep crust. Nature 331, 159–160 (1988). https://doi.org/10.1038/331159a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/331159a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing