Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HSV-mediated transfer of interleukin-10 reduces inflammatory pain through modulation of membrane tumor necrosis factor α in spinal cord microglia

Abstract

To dissect the molecular basis of the neuroimmune response associated with the genesis of inflammatory (nociceptive) pain, we constructed a herpes simplex virus-based gene transfer vector to express the antiinflammatory cytokine interleukin-10 (IL-10), and used it to examine the effect of IL-10 expression in activated microglial cells in vitro, and in inflammatory pain in vivo. IL-10 reduced the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and decreased the expression of full-length membrane spanning tumor necrosis factor-α (mTNFα) following lipopolysaccharide stimulation of microglia in vitro. IL-10 also reduced intracellular cleavage of mTNFα and release of the soluble cleavage product sTNFα. Similar effects on TNFα expression were observed when the cells were pretreated with a p38 MAPK inhibitor. In animals, injection of a dilute solution of formalin in the skin resulted in an increase in mTNFα in spinal dorsal horn, without detectable sTNFα. Local release of IL-10 achieved by gene transfer reduced the number of spontaneous flinches in the early and delayed phases of the formalin test of inflammatory pain. The effect of IL-10 on nocisponsive behavior correlated with a block in phosphorylation of p38 and reduced expression of 26 kDa mTNFα in spinal microglia. The results emphasize the key role played by membrane TNFα in the spinal neuroimmune response in pain caused by peripheral inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Woolf CJ, Allchorne A, Safieh-Garabedian B, Poole S . Cytokines, nerve growth factor and inflammatory hyperalgesia: the contribution of tumour necrosis factor alpha. Br J Pharmacol 1997; 121: 417–424.

    Article  CAS  Google Scholar 

  2. Sorkin LS, Xiao WH, Wagner R, Myers RR . Tumour necrosis factor-alpha induces ectopic activity in nociceptive primary afferent fibres. Neuroscience 1997; 81: 255–262.

    Article  CAS  Google Scholar 

  3. Anzai H, Hamba M, Onda A, Konno S, Kikuchi S . Epidural application of nucleus pulposus enhances nociresponses of rat dorsal horn neurons. Spine 2002; 27: E50–E55.

    Article  Google Scholar 

  4. Onda A, Hamba M, Yabuki S, Kikuchi S . Exogenous tumor necrosis factor-alpha induces abnormal discharges in rat dorsal horn neurons. Spine 2002; 27: 1618–1624; discussion 1624.

    Article  Google Scholar 

  5. Sorkin LS, Doom CM . Epineurial application of TNF elicits an acute mechanical hyperalgesia in the awake rat. J Peripher Nerv Syst 2000; 5: 96–100.

    Article  CAS  Google Scholar 

  6. Junger H, Sorkin LS . Nociceptive and inflammatory effects of subcutaneous TNFalpha. Pain 2000; 85: 145–151.

    Article  CAS  Google Scholar 

  7. Watkins LR, Maier SF . Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol Rev 2002; 82: 981–1011.

    Article  CAS  Google Scholar 

  8. DeLeo JA, Tanga FY, Tawfik VL . Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. Neuroscientist 2004; 10: 40–52.

    Article  CAS  Google Scholar 

  9. Wieseler-Frank J, Maier SF, Watkins LR . Glial activation and pathological pain. Neurochem Int 2004; 45: 389–395.

    Article  CAS  Google Scholar 

  10. Watkins LR, Milligan ED, Maier SF . Glial proinflammatory cytokines mediate exaggerated pain states: implications for clinical pain. Adv Exp Med Biol 2003; 521: 1–21.

    CAS  PubMed  Google Scholar 

  11. Peng X, Zhou Z, Glorioso JC, Fink DJ, Mata M . Tumor necrosis factor alpha contributes to below-level neuropathic pain after spinal cord injury. Ann Neurol 2006; 59: 843–851.

    Article  CAS  Google Scholar 

  12. Hao S, Mata M, Glorioso JC, Fink DJ . HSV-mediated expression of interleukin-4 in dorsal root ganglion neurons reduces neuropathic pain. Mol Pain 2006; 2: 6.

    Article  Google Scholar 

  13. Samad TA, Sapirstein A, Woolf CJ . Prostanoids and pain: unraveling mechanisms and revealing therapeutic targets. Trends Mol Med 2002; 8: 390–396.

    Article  CAS  Google Scholar 

  14. Reeve AJ, Patel S, Fox A, Walker K, Urban L . Intrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat. Eur J Pain 2000; 4: 247–257.

    Article  CAS  Google Scholar 

  15. Milligan ED, Sloane EM, Langer SJ, Cruz PE, Chacur M, Spataro L et al. Controlling neuropathic pain by adeno-associated virus driven production of the anti-inflammatory cytokine, interleukin-10. Mol Pain 2005; 1: 9.

    Article  Google Scholar 

  16. Milligan ED, Langer SJ, Sloane EM, He L, Wieseler-Frank J, O'Connor K et al. Controlling pathological pain by adenovirally driven spinal production of the anti-inflammatory cytokine, interleukin-10. Eur J Neurosci 2005; 21: 2136–2148.

    Article  Google Scholar 

  17. Liu J, Wolfe D, Hao S, Huang S, Glorioso JC, Mata M et al. Peripherally delivered glutamic acid decarboxylase gene therapy for spinal cord injury pain. Mol Ther 2004; 10: 57–66.

    Article  CAS  Google Scholar 

  18. Hao S, Mata M, Wolfe D, Glorioso JC, Fink DJ . Gene transfer of glutamic acid decarboxylase reduces neuropathic pain. Ann Neurol 2005; 57: 914–918.

    Article  CAS  Google Scholar 

  19. Cheepsunthorn P, Radov L, Menzies S, Reid J, Connor JR . Characterization of a novel brain-derived microglial cell line isolated from neonatal rat brain. Glia 2001; 35: 53–62.

    Article  CAS  Google Scholar 

  20. Cunha FQ, Poole S, Lorenzetti BB, Ferreira SH . The pivotal role of tumour necrosis factor alpha in the development of inflammatory hyperalgesia. Br J Pharmacol 1992; 107: 660–664.

    Article  CAS  Google Scholar 

  21. Wagner R, Myers RR . Endoneurial injection of TNF-alpha produces neuropathic pain behaviors. Neuroreport 1996; 7: 2897–2901.

    Article  CAS  Google Scholar 

  22. Schafers M, Sorkin LS, Sommer C . Intramuscular injection of tumor necrosis factor-alpha induces muscle hyperalgesia in rats. Pain 2003; 104: 579–588.

    Article  CAS  Google Scholar 

  23. Schafers M, Sorkin LS, Geis C, Shubayev VI . Spinal nerve ligation induces transient upregulation of tumor necrosis factor receptors 1 and 2 in injured and adjacent uninjured dorsal root ganglia in the rat. Neurosci Lett 2003; 347: 179–182.

    Article  CAS  Google Scholar 

  24. Schafers M, Svensson CI, Sommer C, Sorkin LS . Tumor necrosis factor-alpha induces mechanical allodynia after spinal nerve ligation by activation of p38 MAPK in primary sensory neurons. J Neurosci 2003; 23: 2517–2521.

    Article  CAS  Google Scholar 

  25. Zelenka M, Schafers M, Sommer C . Intraneural injection of interleukin-1beta and tumor necrosis factor-alpha into rat sciatic nerve at physiological doses induces signs of neuropathic pain. Pain 2005; 116: 257–263.

    Article  CAS  Google Scholar 

  26. Tjolsen A, Berge OG, Hunskaar S, Rosland JH, Hole K . The formalin test: an evaluation of the method. Pain 1992; 51: 5–17.

    Article  CAS  Google Scholar 

  27. Watkins LR, Martin D, Ulrich P, Tracey KJ, Maier SF . Evidence for the involvement of spinal cord glia in subcutaneous formalin induced hyperalgesia in the rat. Pain 1997; 71: 225–235.

    Article  CAS  Google Scholar 

  28. Solomon KA, Covington MB, DeCicco CP, Newton RC . The fate of pro-TNF-alpha following inhibition of metalloprotease-dependent processing to soluble TNF-alpha in human monocytes. J Immunol 1997; 159: 4524–4531.

    CAS  PubMed  Google Scholar 

  29. Mohler KM, Sleath PR, Fitzner JN, Cerretti DP, Alderson M, Kerwar SS et al. Protection against a lethal dose of endotoxin by an inhibitor of tumour necrosis factor processing. Nature 1994; 370: 218–220.

    Article  CAS  Google Scholar 

  30. Armstrong L, Thickett DR, Christie SJ, Kendall H, Millar AB . Increased expression of functionally active membrane-associated tumor necrosis factor in acute respiratory distress syndrome. Am J Respir Cell Mol Biol 2000; 22: 68–74.

    Article  CAS  Google Scholar 

  31. Georgopoulos S, Plows D, Kollias G . Transmembrane TNF is sufficient to induce localized tissue toxicity and chronic inflammatory arthritis in transgenic mice. J Inflamm 1996; 46: 86–97.

    CAS  PubMed  Google Scholar 

  32. Svensson CI, Marsala M, Westerlund A, Calcutt NA, Campana WM, Freshwater JD et al. Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing. J Neurochem 2003; 86: 1534–1544.

    Article  CAS  Google Scholar 

  33. Kontoyiannis D, Kotlyarov A, Carballo E, Alexopoulou L, Blackshear PJ, Gaestel M et al. Interleukin-10 targets p38 MAPK to modulate ARE-dependent TNF mRNA translation and limit intestinal pathology. EMBO J 2001; 20: 3760–3770.

    Article  CAS  Google Scholar 

  34. Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y, Fisher PB . Interleukin-10 and related cytokines and receptors. Annu Rev Immunol 2004; 22: 929–979.

    Article  CAS  Google Scholar 

  35. Vale ML, Marques JB, Moreira CA, Rocha FA, Ferreira SH, Poole S et al. Antinociceptive effects of interleukin-4, -10, and -13 on the writhing response in mice and zymosan-induced knee joint incapacitation in rats. J Pharmacol Exp Ther 2003; 304: 102–108.

    Article  CAS  Google Scholar 

  36. Plunkett JA, Yu CG, Easton JM, Bethea JR, Yezierski RP . Effects of interleukin-10 (IL-10) on pain behavior and gene expression following excitotoxic spinal cord injury in the rat. Exp Neurol 2001; 168: 144–154.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (DJF and MM) and the Department of Veterans Affairs (DJF and MM). We thank Dr Joseph Glorioso (University of Pittsburgh) for providing the HSV vector backbone and 7b cells, Dr JR Connor (Pennsylvania State University College of Medicine) for the HAPI cells, Molly Rockstad for technical assistance, Vikram Thakur Singh for propagation of the vectors and Shue Liu for tissue culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Mata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Z., Peng, X., Hao, S. et al. HSV-mediated transfer of interleukin-10 reduces inflammatory pain through modulation of membrane tumor necrosis factor α in spinal cord microglia. Gene Ther 15, 183–190 (2008). https://doi.org/10.1038/sj.gt.3303054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3303054

Keywords

This article is cited by

Search

Quick links