Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adeno-associated viral vector-mediated hypoxia-regulated VEGF gene transfer promotes angiogenesis following focal cerebral ischemia in mice

Abstract

Uncontrolled expression of vascular endothelial growth factor (VEGF) in vivo may cause unexpected side effects, such as brain hemangioma or tumor growth. Because hypoxia-inducible factor-1 (HIF-1) is upregulated during cerebral ischemia and regulates gene expression by binding to a cis-acting hypoxia-responsive element (HRE), we therefore used a novel HRE, originating in the 3′-end of the erythropoietin (Epo) gene, to control gene expression in the ischemic brain. A concatemer of nine copies (H9) of the consensus sequence of HRE was used to mediate hypoxia induction. Three groups of adult CD-1 mice received AAVH9-VEGF, AAVH9-lacZ or saline injection, and then underwent 45 min of transient middle cerebral artery occlusion (tMCAO). Results show that HIF-1 was persistently expressed in the ischemic brain. VEGF was overexpressed in the ischemic perifocal region in AAVH9-VEGF-transduced mice. Double-labeled immunostaining showed that VEGF expressed in neurons and astrocytes but not endothelial cells, suggesting that adeno-associated virus (AAV) vectors transduced neurons and astrocytes predominantly. The total number of microvessels/enlarged microvessels was greatly increased in the AAVH9-VEGF-transduced mice (180±29/27±4) compared to the AAVH9-lacZ (118±19/14±3) or saline-treated (119±20/14±2) mice after tMCAO (P<0.05). Cell proliferation examination demonstrated that these microvessels were newly formed. Regional cerebral blood flow recovery in the AAVH9-VEGF-transduced mice was also better than in AAVH9-lacZ or saline-treated mice (P<0.05). Our data indicated that HRE is a novel trigger for the control of VEGF expression in the ischemic brain. VEGF overexpression through AAVH9-VEGF gene transfer showed stable focal angiogenic effects in post-ischemic repair process, providing an opportunity to rebuild injured brain tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

AAV:

adeno-associated viral vector

AAV-VEGF:

AAV encoding VEGF165 gene

AAV-lacZ:

AAV encoding β-galactosidase gene

PCNA:

proliferating cell nuclear antigen

VEGF:

vascular endothelial growth factor

References

  1. Krupinski J, Kaluza J, Kumar P, Wang M, Kumar S . Prognostic value of blood vessel density in ischaemic stroke. Lancet 1993; 342: 742.

    Article  CAS  PubMed  Google Scholar 

  2. Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK et al. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 1997; 28: 2518–2527.

    Article  CAS  PubMed  Google Scholar 

  3. Slevin M, Krupinski J, Slowik A, Kumar P, Szczudlik A, Gaffney J . Serial measurement of vascular endothelial growth factor and transforming growth factor-beta1 in serum of patients with acute ischemic stroke. Stroke 2000; 31: 1863–1870.

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y, Kilic E, Kilic U, Weber B, Bassetti CL, Marti HH et al. VEGF overexpression induces post-ischaemic neuroprotection, but facilitates haemodynamic steal phenomena. Brain 2005; 128: 52–63.

    Article  PubMed  Google Scholar 

  5. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 2003; 111: 1843–1851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang R, Wang L, Zhang L, Chen J, Zhu Z, Zhang Z et al. Nitric oxide enhances angiogenesis via the synthesis of vascular endothelial growth factor and cGMP after stroke in the rat. Circ Res 2003; 92: 308–313.

    Article  CAS  PubMed  Google Scholar 

  7. Conway EM, Collen D, Carmeliet P . Molecular mechanisms of blood vessel growth. Cardiovasc Res 2001; 49: 507–521.

    Article  CAS  PubMed  Google Scholar 

  8. Hills CP . Ultrastructural changes in the capillary bed of the rat cerebral cortex in anoxic–ischemic brain lesions. Am J Pathol 1964; 44: 531–551.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Coyle P . Diameter and length changes in cerebral collaterals after middle cerebral artery occlusion in the young rat. Anat Rec 1984; 210: 357–364.

    Article  CAS  PubMed  Google Scholar 

  10. Coyle P, Heistad DD . Blood flow through cerebral collateral vessels one month after middle cerebral artery occlusion. Stroke 1987; 18: 407–411.

    Article  CAS  PubMed  Google Scholar 

  11. Garcia JH, Liu KF, Yoshida Y, Lian J, Chen S, del Zoppo GJ . Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am J Pathol 1994; 144: 188–199.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sbarbati A, Pietra C, Baldassarri AM, Guerrini U, Ziviani L, Reggiani A et al. The microvascular system in ischemic cortical lesions. Acta Neuropathol (Berl) 1996; 92: 56–63.

    Article  CAS  Google Scholar 

  13. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J . Vascular-specific growth factors and blood vessel formation. Nature 2000; 407: 242–248.

    Article  CAS  PubMed  Google Scholar 

  14. Rosenstein JM, Mani N, Silverman WF, Krum JM . Patterns of brain angiogenesis after vascular endothelial growth factor administration in vitro and in vivo. Proc Natl Acad Sci USA 1998; 95: 7086–7091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Monahan PE, Samulski RJ . Adeno-associated virus vectors for gene therapy: more pros than cons? Mol Med Today 2000; 6: 433–440.

    Article  CAS  PubMed  Google Scholar 

  16. Zaiss AK, Liu Q, Bowen GP, Wong NC, Bartlett JS, Muruve DA . Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. J Virol 2002; 76: 4580–4590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee RJ, Springer ML, Blanco-Bose WE, Shaw R, Ursell PC, Blau HM . VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation 2000; 102: 898–901.

    Article  CAS  PubMed  Google Scholar 

  18. Springer ML, Chen AS, Kraft PE, Bednarski M, Blau HM . VEGF gene delivery to muscle: potential role for vasculogenesis in adults. Mol Cell 1998; 2: 549–558.

    Article  CAS  PubMed  Google Scholar 

  19. Bohl D, Salvetti A, Moullier P, Heard JM . Control of erythropoietin delivery by doxycycline in mice after intramuscular injection of adeno-associated vector. Blood 1998; 92: 1512–1517.

    CAS  PubMed  Google Scholar 

  20. Hofmann A, Nolan GP, Blau HM . Rapid retroviral delivery of tetracycline-inducible genes in a single autoregulatory cassette. Proc Natl Acad Sci USA 1996; 93: 5185–5190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bohl D, Naffakh N, Heard JM . Long-term control of erythropoietin secretion by doxycycline in mice transplanted with engineered primary myoblasts. Nat Med 1997; 3: 299–305.

    Article  CAS  PubMed  Google Scholar 

  22. Gossen M, Bujard H . Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 1992; 89: 5547–5551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blau HM, Rossi FM . Tet B or not tet B: advances in tetracycline-inducible gene expression. Proc Natl Acad Sci USA 1999; 96: 797–799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rossi FM, Guicherit OM, Spicher A, Kringstein AM, Fatyol K, Blakely BT et al. Tetracycline-regulatable factors with distinct dimerization domains allow reversible growth inhibition by p16. Nat Genet 1998; 20: 389–393.

    Article  CAS  PubMed  Google Scholar 

  25. Kringstein AM, Rossi FM, Hofmann A, Blau HM . Graded transcriptional response to different concentrations of a single transactivator. Proc Natl Acad Sci USA 1998; 95: 13670–13675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang GL, Jiang BH, Rue EA, Semenza GL . Hypoxia-inducible factor 1 is a basic–helix–loop–helix–PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995; 92: 5510–5514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Post DE, Van Meir EG . Generation of bidirectional hypoxia/HIF-responsive expression vectors to target gene expression to hypoxic cells. Gene Therapy 2001; 8: 1801–1807.

    Article  CAS  PubMed  Google Scholar 

  28. Su H, Arakawa-Hoyt J, Kan YW . Adeno-associated viral vector-mediated hypoxia response element-regulated gene expression in mouse ischemic heart model. Proc Natl Acad Sci USA 2002; 99: 9480–9485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Betz AL, Yang GY, Davidson BL . Attenuation of stroke size in rats using an adenoviral vector to induce overexpression of interleukin-1 receptor antagonist in brain. J Cereb Blood Flow Metab 1995; 15: 547–551.

    Article  CAS  PubMed  Google Scholar 

  30. Parenti A, Bellik L, Brogelli L, Filippi S, Ledda F . Endogenous VEGF-A is responsible for mitogenic effects of MCP-1 on vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2004; 286: H1978–H1984.

    Article  CAS  PubMed  Google Scholar 

  31. Laguens R, Cabeza Meckert P, Vera Janavel G, Del Valle H, Lascano E, Negroni J et al. Entrance in mitosis of adult cardiomyocytes in ischemic pig hearts after plasmid-mediated rhVEGF165 gene transfer. Gene Therapy 2002; 9: 1676–1681.

    Article  CAS  PubMed  Google Scholar 

  32. Leker RR, Teichner A, Ovadia H, Keshet E, Reinherz E, Ben-Hur T . Expression of endothelial nitric oxide synthase in the ischemic penumbra: relationship to expression of neuronal nitric oxide synthase and vascular endothelial growth factor. Brain Res 2001; 909: 1–7.

    Article  CAS  PubMed  Google Scholar 

  33. Carmeliet P . Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000; 6: 389–395.

    Article  CAS  PubMed  Google Scholar 

  34. Pettersson A, Nagy JA, Brown LF, Sundberg C, Morgan E, Jungles S et al. Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab Invest 2000; 80: 99–115.

    Article  CAS  PubMed  Google Scholar 

  35. Cobbs CS, Chen J, Greenberg DA, Graham SH . Vascular endothelial growth factor expression in transient focal cerebral ischemia in the rat. Neurosci Lett 1998; 249: 79–82.

    Article  CAS  PubMed  Google Scholar 

  36. Hayashi T, Abe K, Suzuki H, Itoyama Y . Rapid induction of vascular endothelial growth factor gene expression after transient middle cerebral artery occlusion in rats. Stroke 1997; 28: 2039–2044.

    Article  CAS  PubMed  Google Scholar 

  37. Kovacs Z, Ikezaki K, Samoto K, Inamura T, Fukui M . VEGF and flt. Expression time kinetics in rat brain infarct. Stroke 1996; 27: 1865–1872; discussion 1872–1863.

    Article  CAS  PubMed  Google Scholar 

  38. Lennmyr F, Ata KA, Funa K, Olsson Y, Terent A . Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt-1 and Flk-1) following permanent and transient occlusion of the middle cerebral artery in the rat. J Neuropathol Exp Neurol 1998; 57: 874–882.

    Article  CAS  PubMed  Google Scholar 

  39. Plate KH, Beck H, Danner S, Allegrini PR, Wiessner C . Cell type specific upregulation of vascular endothelial growth factor in an MCA-occlusion model of cerebral infarct. J Neuropathol Exp Neurol 1999; 58: 654–666.

    Article  CAS  PubMed  Google Scholar 

  40. Jin KL, Mao XO, Greenberg DA . Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci USA 2000; 97: 10242–10247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Issa R, Krupinski J, Bujny T, Kumar S, Kaluza J, Kumar P . Vascular endothelial growth factor and its receptor, KDR, in human brain tissue after ischemic stroke. Lab Invest 1999; 79: 417–425.

    CAS  PubMed  Google Scholar 

  42. Lee OH, Kim YM, Lee YM, Moon EJ, Lee DJ, Kim JH et al. Sphingosine 1-phosphate induces angiogenesis: its angiogenic action and signaling mechanism in human umbilical vein endothelial cells. Biochem Biophys Res Commun 1999; 264: 743–750.

    Article  CAS  PubMed  Google Scholar 

  43. Tenenbaum L, Chtarto A, Lehtonen E, Velu T, Brotchi J, Levivier M . Recombinant AAV-mediated gene delivery to the central nervous system. J Gene Med 2004; 6 (Suppl 1): S212–S222.

    Article  CAS  PubMed  Google Scholar 

  44. Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S et al. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 2004; 10: 302–317.

    Article  CAS  PubMed  Google Scholar 

  45. Garcia JH, Kalimo H, Kamijyo Y, Trump BF . Cellular events during partial cerebral ischemia. I. Electron microscopy of feline cerebral cortex after middle-cerebral-artery occlusion. Virchows Arch B Cell Pathol 1977; 25: 191–206.

    CAS  PubMed  Google Scholar 

  46. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C et al. VEGF enhances angiogenesis and promotes blood–brain barrier leakage in the ischemic brain. J Clin Invest 2000; 106: 829–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schielke GP, Yang GY, Shivers BD, Betz AL . Reduced ischemic brain injury in interleukin-1 beta converting enzyme-deficient mice. J Cereb Blood Flow Metab 1998; 18: 180–185.

    Article  CAS  PubMed  Google Scholar 

  48. Ayata C, Dunn AK, Gursoy OY, Huang Z, Boas DA, Moskowitz MA . Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex. J Cereb Blood Flow Metab 2004; 24: 744–755.

    Article  PubMed  Google Scholar 

  49. Gruber M, Hu CJ, Johnson RS, Brown EJ, Keith B, Simon MC . Acute postnatal ablation of Hif-2alpha results in anemia. Proc Natl Acad Sci USA 2007; 104: 2301–2306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhu Y, Lawton MT, Du R, Shwe Y, Chen Y, Shen F et al. Expression of hypoxia-inducible factor-1 and vascular endothelial growth factor in response to venous hypertension. Neurosurgery 2006; 59: 687–696; discussion 687–696.

    Article  PubMed  Google Scholar 

  51. Kim CH, Cho YS, Chun YS, Park JW, Kim MS . Early expression of myocardial HIF-1alpha in response to mechanical stresses: regulation by stretch-activated channels and the phosphatidylinositol 3-kinase signaling pathway. Circ Res 2002; 90: E25–E33.

    CAS  PubMed  Google Scholar 

  52. Pufe T, Lemke A, Kurz B, Petersen W, Tillmann B, Grodzinsky AJ et al. Mechanical overload induces VEGF in cartilage discs via hypoxia-inducible factor. Am J Pathol 2004; 164: 185–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Su H, Lu R, Kan YW . Adeno-associated viral vector-mediated vascular endothelial growth factor gene transfer induces neovascular formation in ischemic heart. Proc Natl Acad Sci USA 2000; 97: 13801–13806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang GY, Zhao Y, Davidson BL, Betz AL . Overexpression of interleukin-1 receptor antagonist in the mouse brain reduces ischemic brain injury. Brain Res 1997; 751: 181–188.

    Article  CAS  PubMed  Google Scholar 

  55. Pang L, Ye W, Che XM, Roessler BJ, Betz AL, Yang GY . Reduction of inflammatory response in the mouse brain with adenoviral- mediated transforming growth factor-ss1 expression. Stroke 2001; 32: 544–552.

    Article  CAS  PubMed  Google Scholar 

  56. Yang GY, Chan PH, Chen J, Carlson E, Chen SF, Weinstein P et al. Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke 1994; 25: 165–170.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

These studies were supported by NIH Grants: R01 NS027713 (WLY), R21 NS050668 (GYY) and P01 NS044145 (WLY, GYY). We thank Voltaire Gungab for editorial assistance, and the staff of the Center for Cerebrovascular Research (http://avm.ucsf.edu/) for their collaborative support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G-Y Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, F., Fan, Y., Su, H. et al. Adeno-associated viral vector-mediated hypoxia-regulated VEGF gene transfer promotes angiogenesis following focal cerebral ischemia in mice. Gene Ther 15, 30–39 (2008). https://doi.org/10.1038/sj.gt.3303048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3303048

Keywords

This article is cited by

Search

Quick links