Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HSV-1 amplicon-mediated post-transcriptional inhibition of Rad51 sensitizes human glioma cells to ionizing radiation

Abstract

Standard treatment for glioblastoma multiforme and other brain tumors consists of surgical resection followed by combined radio-/chemotherapy. However, radiation resistance of tumor cells limits the success of this treatment, and the tumors invariably recur. Therefore, the selective inhibition of molecular mediators of radiation resistance may provide therapeutic benefit to the patient. One of these targets is the Rad51 protein, which is a key component of the homologous recombinational repair of DNA double-strand breaks. Here, we investigated whether post-transcriptional silencing of Rad51 by herpes simplex virus-type 1 (HSV-1) amplicon vector-mediated short interfering RNA expression can enhance the antitumor effect of radiation therapy. We demonstrate that these vectors specifically and efficiently inhibited the radiation-induced recruitment of Rad51 into nuclear foci in human glioma cells. The combination of vector-mediated silencing of Rad51 expression and treatment with ionizing radiation resulted in a pronounced reduction of the survival of human glioma cells in culture. In athymyc mice, a single intratumoral injection of Rad51-specific HSV-1 amplicon vector followed by a single radiation treatment resulted in a significant decrease in tumor size. In control animals, including mice that received an intratumoral injection of Rad51-specific amplicon vector but no radiation treatment, the tumor sizes increased.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kleihues P, Cavenee WK . Pathology and Genetics of Tumours of the Nervous System (WHO). IARC Press: Lyon, 2000.

    Google Scholar 

  2. Preston-Martin S . Epidemiology of gliomas. In: Berger MS, Wilson CD (eds). The Gliomas. Saunders: Philadelphia, PA, 1999, pp 2.

    Google Scholar 

  3. Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev 2001; 15: 1311–1333.

    Article  CAS  PubMed  Google Scholar 

  4. Belli M, Sapora O, Tabocchini MA . Molecular targets in cellular response to ionizing radiation and implications in space radiation protection. J Radiat Res (Tokyo) 2002; 43 (Suppl): S13–S19.

    Article  CAS  Google Scholar 

  5. Chen G, Yuan SS, Liu W, Xu Y, Trujillo K, Song B et al. Radiation-induced assembly of Rad51 and Rad52 recombination complex requires ATM and c-Abl. J Biol Chem 1999; 274: 12748–12752.

    Article  CAS  PubMed  Google Scholar 

  6. Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006; 354: 567–578.

    Article  CAS  PubMed  Google Scholar 

  7. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352: 987–996.

    Article  CAS  PubMed  Google Scholar 

  8. Cahill D, Connor B, Carney JP . Mechanisms of eukaryotic DNA double strand break repair. Front Biosci 2006; 11: 1958–1976.

    Article  CAS  PubMed  Google Scholar 

  9. Johnson RD, Jasin M . Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J 2000; 19: 3398–3407.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Yuan ZM, Huang Y, Ishiko T, Nakada S, Utsugisawa T, Kharbanda S et al. Regulation of Rad51 function by c-Abl in response to DNA damage. J Biol Chem 1998; 273: 3799–3802.

    Article  CAS  PubMed  Google Scholar 

  11. Sonoda E, Sasaki MS, Buerstedde JM, Bezzubova O, Shinohara A, Ogawa H et al. Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J 1998; 17: 598–608.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Shinohara A, Ogawa H, Ogawa T . Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 1992; 69: 457–470.

    Article  CAS  PubMed  Google Scholar 

  13. Tutt A, Connor F, Bertwistle D, Kerr P, Peacock J, Ross G et al. Cell cycle and genetic background dependence of the effect of loss of BRCA2 on ionizing radiation sensitivity. Oncogene 2003; 22: 2926–2931.

    Article  CAS  PubMed  Google Scholar 

  14. Tashiro S, Walter J, Shinohara A, Kamada N, Cremer T . Rad51 accumulation at sites of DNA damage and in postreplicative chromatin. J Cell Biol 2000; 150: 283–291.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Haaf T, Raderschall E, Reddy G, Ward DC, Radding CM, Golub EI . Sequestration of mammalian Rad51-recombination protein into micronuclei. J Cell Biol 1999; 144: 11–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Liu Y, Maizels N . Coordinated response of mammalian Rad51 and Rad52 to DNA damage. EMBO Rep 2000; 1: 85–90.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Noguchi M, Yu D, Hirayama R, Ninomiya Y, Sekine E, Kubota N et al. Inhibition of homologous recombination repair in irradiated tumor cells pretreated with Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Biochem Biophys Res Commun 2006; 351: 658–663.

    Article  CAS  PubMed  Google Scholar 

  18. Raderschall E, Stout K, Freier S, Suckow V, Schweiger S, Haaf T . Elevated levels of Rad51 recombination protein in tumor cells. Cancer Res 2002; 62: 219–225.

    CAS  PubMed  Google Scholar 

  19. Vispe S, Cazaux C, Lesca C, Defais M . Overexpression of Rad51 protein stimulates homologous recombination and increases resistance of mammalian cells to ionizing radiation. Nucleic Acids Res 1998; 26: 2859–2864.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Collis SJ, Tighe A, Scott SD, Roberts SA, Hendry JH, Margison GP . Ribozyme minigene-mediated RAD51 down-regulation increases radiosensitivity of human prostate cancer cells. Nucleic Acids Res 2001; 29: 1534–1538.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ohnishi T, Taki T, Hiraga S, Arita N, Morita T . In vitro and in vivo potentiation of radiosensitivity of malignant gliomas by antisense inhibition of the RAD51 gene. Biochem Biophys Res Commun 1998; 245: 319–324.

    Article  CAS  PubMed  Google Scholar 

  22. Taki T, Ohnishi T, Yamamoto A, Hiraga S, Arita N, Izumoto S et al. Antisense inhibition of the RAD51 enhances radiosensitivity. Biochem Biophys Res Commun 1996; 223: 434–438.

    Article  CAS  PubMed  Google Scholar 

  23. Russell JS, Brady K, Burgan WE, Cerra MA, Oswald KA, Camphausen K et al. Gleevec-mediated inhibition of Rad51 expression and enhancement of tumor cell radiosensitivity. Cancer Res 2003; 63: 7377–7383.

    CAS  PubMed  Google Scholar 

  24. Miyagishi M, Hayashi M, Taira K . Comparison of the suppressive effects of antisense oligonucleotides and siRNAs directed against the same targets in mammalian cells. Antisense Nucleic Acid Drug Dev 2003; 13: 1–7.

    Article  CAS  PubMed  Google Scholar 

  25. Tijsterman M, Plasterk RH . Dicers at RISC; the mechanism of RNAi. Cell 2004; 117: 1–3.

    Article  CAS  PubMed  Google Scholar 

  26. Yokota T, Miyagishi M, Hino T, Matsumura R, Tasinato A, Urushitani M et al. siRNA-based inhibition specific for mutant SOD1 with single nucleotide alternation in familial ALS, compared with ribozyme and DNA enzyme. Biochem Biophys Res Commun 2004; 314: 283–291.

    Article  CAS  PubMed  Google Scholar 

  27. Dorsett Y, Tuschl T . siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 2004; 3: 318–329.

    Article  CAS  PubMed  Google Scholar 

  28. Saydam O, Glauser DL, Heid I, Turkeri G, Hilbe M, Jacobs AH et al. Herpes simplex virus 1 amplicon vector-mediated siRNA targeting epidermal growth factor receptor inhibits growth of human glioma cells in vivo. Mol Ther 2005; 12: 803–812.

    Article  CAS  PubMed  Google Scholar 

  29. Ito M, Yamamoto S, Nimura K, Hiraoka K, Tamai K, Kaneda Y . Rad51 siRNA delivered by HVJ envelope vector enhances the anti-cancer effect of cisplatin. J Gene Med 2005; 7: 1044–1052.

    Article  CAS  PubMed  Google Scholar 

  30. Saeki Y, Ichikawa T, Saeki A, Chiocca EA, Tobler K, Ackermann M et al. Herpes simplex virus type 1 DNA amplified as bacterial artificial chromosome in Escherichia coli: rescue of replication-competent virus progeny and packaging of amplicon vectors. Hum Gene Ther 1998; 9: 2787–2794.

    Article  CAS  PubMed  Google Scholar 

  31. Saeki Y, Fraefel C, Ichikawa T, Breakefield XO, Chiocca EA . Improved helper virus-free packaging system for HSV amplicon vectors using an ICP27-deleted, oversized HSV-1 DNA in a bacterial artificial chromosome. Mol Ther 2001; 3: 591–601.

    Article  CAS  PubMed  Google Scholar 

  32. Iliakis G . The role of DNA double strand breaks in ionizing radiation-induced killing of eukaryotic cells. Bioessays 1991; 13: 641–648.

    Article  CAS  PubMed  Google Scholar 

  33. Schwartz M, Zlotorynski E, Goldberg M, Ozeri E, Rahat A, le Sage C et al. Homologous recombination and nonhomologous end-joining repair pathways regulate fragile site stability. Genes Dev 2005; 19: 2715–2726.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kelland LR, Edwards SM, Steel GG . Induction and rejoining of DNA double-strand breaks in human cervix carcinoma cell lines of differing radiosensitivity. Radiat Res 1988; 116: 526–538.

    Article  CAS  PubMed  Google Scholar 

  35. Walsh MJ, Shue G, Spidoni K, Kapoor A . E2F-1 and a cyclin-like DNA repair enzyme, uracil-DNA glycosylase, provide evidence for an autoregulatory mechanism for transcription. J Biol Chem 1995; 270: 5289–5298.

    Article  CAS  PubMed  Google Scholar 

  36. Nagelhus TA, Haug T, Singh KK, Keshav KF, Skorpen F, Otterlei M et al. A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34-kDa subunit of replication protein A. J Biol Chem 1997; 272: 6561–6566.

    Article  CAS  PubMed  Google Scholar 

  37. Thacker J . The RAD51 gene family, genetic instability and cancer. Cancer Lett 2005; 219: 125–135.

    Article  CAS  PubMed  Google Scholar 

  38. McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to Poly(ADP-ribose) polymerase inhibition. Cancer Res 2006; 66: 8109–8115.

    Article  CAS  PubMed  Google Scholar 

  39. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005; 434: 917–921.

    Article  CAS  PubMed  Google Scholar 

  40. Rampling R, Cruickshank G, Papanastassiou V, Nicoll J, Hadley D, Brennan D et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Therapy 2000; 7: 859–866.

    Article  CAS  PubMed  Google Scholar 

  41. Markert JM, Gillespie GY, Weichselbaum RR, Roizman B, Whitley RJ . Genetically engineered HSV in the treatment of glioma: a review. Rev Med Virol 2000; 10: 17–30.

    Article  CAS  PubMed  Google Scholar 

  42. Fraefel C, Song S, Lim F, Lang P, Yu L, Wang Y et al. Helper virus-free transfer of herpes simplex virus type 1 plasmid vectors into neural cells. J Virol 1996; 70: 7190–7197.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Herrlinger U, Jacobs A, Quinones A, Woiciechowsky C, Sena-Esteves M, Rainov NG et al. Helper virus-free herpes simplex virus type 1 amplicon vectors for granulocyte-macrophage colony-stimulating factor-enhanced vaccination therapy for experimental glioma. Hum Gene Ther 2000; 11: 1429–1438.

    Article  CAS  PubMed  Google Scholar 

  44. Lilley CE, Carson CT, Muotri AR, Gage FH, Weitzman MD . DNA repair proteins affect the lifecycle of herpes simplex virus 1. Proc Natl Acad Sci USA 2005; 102: 5844–5849.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Sandler VM, Wang S, Angelo K, Lo HG, Breakefield XO, Clapham DE . Modified herpes simplex virus delivery of enhanced GFP into the central nervous system. J Neurosci Methods 2002; 121: 211–219.

    Article  CAS  PubMed  Google Scholar 

  46. Lim DS, Hasty P . A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol Cell Biol 1996; 16: 7133–7143.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Tsuzuki T, Fujii Y, Sakumi K, Tominaga Y, Nakao K, Sekiguchi M et al. Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc Natl Acad Sci USA 1996; 93: 6236–6240.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kati Zlinszky for technical assistance. This work was supported in part by the Cancer League of Kanton Zurich, the Swiss National Science Foundation (No. 3100A0-100195), and the 6th FW European Molecular Imaging Laboratories (EMIL)-NoE for Combating Cancer (LSHC-CT-2004-503569).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Fraefel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saydam, O., Saydam, N., Glauser, D. et al. HSV-1 amplicon-mediated post-transcriptional inhibition of Rad51 sensitizes human glioma cells to ionizing radiation. Gene Ther 14, 1143–1151 (2007). https://doi.org/10.1038/sj.gt.3302967

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302967

Keywords

This article is cited by

Search

Quick links