Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lentivirus-mediated gene transfer to the rat, ovine and human cornea

Abstract

Gene therapy of the cornea shows promise for modulating corneal transplant rejection but the most appropriate vector for gene transfer has yet to be determined. We investigated a lentiviral vector (LV) for its ability to transduce corneal endothelium. A lentivector expressing enhanced yellow fluorescent protein (eYFP) under the control of the Simian virus type 40 early promoter (LV-SV40-eYFP) transduced 80–90% of rat, ovine and human corneal endothelial cells as detected by fluorescence microscopy. The kinetics of gene expression varied among species, with ovine corneal endothelium showing a relative delay in detectable reporter gene expression compared with the rat or human corneal endothelium. Vectors containing the myeloproliferative sarcoma virus promoter or the phosphoglycerate kinase promoter were not significantly more effective than LV-SV40-eYFP. The stability of eYFP expression in rat and ovine corneas following ex vivo transduction of the donor cornea was assessed following orthotopic corneal transplantation. Following transduction ex vivo, eYFP expression was maintained in corneal endothelial cells for at least 28 days after corneal transplantation in the sheep and >60 days in the rat. Thus, rat, ovine and human corneal endothelial cells were efficiently transduced by the LV, and gene expression appeared stable over weeks in vivo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Whitcher JP, Srinivasan M, Upadhyay MP . Corneal blindness: a global perspective. Bull World Health Organ 2001; 79: 214–221.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Williams KA, Esterman AJ, Bartlett C, Holland H, Hornsby NB, Coster DJ, on behalf of all contributors to the Australian Corneal Graft Registry. How effective is corneal transplantation? Factors influencing long-term outcome in multivariate analysis. Transplantation 2006; 81: 896–901.

    Article  Google Scholar 

  3. George AJ, Arancibia-Carcamo CV, Awad HM, Comer RM, Fehevari Z, King WJ et al. Gene delivery to the corneal endothelium. Am J Respir Crit Care Med 2000; 162: S194–S200.

    Article  CAS  Google Scholar 

  4. Williams KA, Jessup CF, Coster DJ . Gene therapy approaches to prolonging corneal allograft survival. Expert Opin Biol Ther 2004; 4: 1059–1071.

    Article  CAS  Google Scholar 

  5. Klebe S, Sykes PJ, Coster DJ, Krishnan R, Williams KA . Prolongation of sheep corneal allograft survival by transfer of the gene encoding ovine interleukin 10. Transplantation 2001; 71: 1214–1220.

    Article  CAS  Google Scholar 

  6. Klebe S, Coster DJ, Sykes PJ, Swinburne S, Hallsworth P, Scheerlinck J-PY et al. Prolongation of sheep corneal allograft survival by transfer of the gene encoding ovine interleukin 12-p40 but not interleukin 4 to donor corneal endothelium. J Immunol 2005; 175: 2219–2226.

    Article  CAS  Google Scholar 

  7. Konig Merediz SA, Zhang EP, Wittig B, Hoffmann F . Ballistic transfer of minimalistic immunologically defined expression constructs for IL4 and CTLA4 into the corneal epithelium in mice after orthotopic corneal allograft transplantation. Graefes Arch Clin Exp Ophthalmol 2000; 238: 701–707.

    Article  CAS  Google Scholar 

  8. Zhang EP, Franke J, Schroff M, Junghans C, Wittig B, Hoffmann F . Ballistic CTLA4 and IL-4 gene transfer into the lower lid prolongs orthotopic corneal graft survival in mice. Graefes Arch Clin Exp Ophthalmol 2003; 241: 921–926.

    Article  CAS  Google Scholar 

  9. Pleyer U, Bertelmann E, Rieck P, Hartmann C, Volk HD, Ritter T . Survival of corneal allografts following adenovirus-mediated gene transfer of interleukin-4. Graefes Arch Clin Exp Ophthalmol 2002; 238: 531–536.

    Article  Google Scholar 

  10. Rayner SA, Larkin DF, George AJ . TNF receptor secretion after ex vivo adenoviral gene transfer to cornea and effect on in vivo graft survival. Invest Ophthalmol Vis Sci 2001; 42: 1568–1573.

    CAS  PubMed  Google Scholar 

  11. Murthy RC, McFarland TJ, Yoken J, Chen S, Barone C, Burke D et al. Corneal transduction to inhibit angiogenesis and graft failure. Invest Ophthalmol Vis Sci 2003; 44: 1837–1842.

    Article  Google Scholar 

  12. Comer RM, King WJ, Ardjomand N, Theoharis S, George AJ, Larkin DF . Effect of administration of CTLA4-Ig as protein or cDNA on corneal allograft survival. Invest Ophthalmol Vis Sci 2002; 43: 1095–1103.

    PubMed  Google Scholar 

  13. Gong N, Pleyer U, Yang J, Vogt K, Hill M, Anegon I et al. Influence of local and systemic CTLA4Ig gene transfer on corneal allograft survival. J Gene Med 2006; 8: 459–467.

    Article  CAS  Google Scholar 

  14. Beutelspacher SC, Pillai R, Watson MP, Tan PH, Tsang J, McClure MO et al. Function of indoleamine 2,3-dioxygenase in corneal allograft rejection and prolongation of allograft survival by over-expression. Eur J Immunol 2006; 36: 690–700.

    Article  CAS  Google Scholar 

  15. Lai YK, Shen WY, Brankov M, Lai CM, Constable IJ, Rakoczy PE . Potential long-term inhibition of ocular neovascularisation by recombinant adeno-associated virus-mediated secretion gene therapy. Gene Ther 2002; 9: 804–813.

    Article  CAS  Google Scholar 

  16. Beutelspacher SC, Ardjomand N, Tan PH, Patton GS, Larkin DF, George AJ et al. Comparison of HIV-1 and EIAV-based lentiviral vectors in corneal transduction. Exp Eye Res 2005; 80: 787–794.

    Article  CAS  Google Scholar 

  17. Fuller M, Anson DS . Helper plasmids for production of HIV-1 derived vectors. Hum Gene Ther 2002; 12: 2085–2097.

    Google Scholar 

  18. Anson DS, Fuller M . Rational development of a HIV-1 gene therapy vector. J Gene Med 2003; 5: 829–838.

    Article  CAS  Google Scholar 

  19. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  Google Scholar 

  20. Tuft SJ, Williams KA, Coster DJ . Endothelial repair in the rat cornea. Invest Ophthalmol Vis Sci 1986; 27: 1199–1204.

    CAS  PubMed  Google Scholar 

  21. Liu JW, Pernod G, Dunoyer-Geindre S, Fish RJ, Yang H, Bounameaux H et al. Promoter dependence of transgene expression by lentivirus-transduced human blood-derived endothelial progenitor cells. Stem Cells 2006; 24: 199–208.

    Article  Google Scholar 

  22. Kostic C, Chiodini F, Salmon P, Wiznerowicz M, Deglon N, Hornfeld D et al. Activity analysis of housekeeping promoters using self-inactivating lentiviral vector delivery into the mouse retina. Gene Ther 2003; 10: 818–821.

    Article  CAS  Google Scholar 

  23. Pleyer U, Dannowski H . Delivery of genes via liposomes to corneal endothelial cells. Drug News Perspect 2002; 15: 283–289.

    Article  CAS  Google Scholar 

  24. Jun AS, Larkin DFP . Prospects for gene therapy in corneal disease. Eye 2003; 17: 906–911.

    Article  CAS  Google Scholar 

  25. Borras T . Recent developments in ocular gene therapy. Exp Eye Res 2003; 76: 643–652.

    Article  CAS  Google Scholar 

  26. Klebe S, Sykes PJ, Coster DJ, Bloom DC, Williams KA . Gene transfer to ovine corneal endothelium. Clin Experiment Ophthalmol 2001; 29: 316–322.

    Article  CAS  Google Scholar 

  27. Larkin DF, Oral HB, Ring CJ, Lemoine NR, George AJ . Adenovirus-mediated gene delivery to the corneal endothelium. Transplantation 1996; 613: 363–370.

    Article  Google Scholar 

  28. Somia N, Verma IM . Gene therapy: trials and tribulations. Nat Rev Genet 2000; 1: 91–99.

    Article  CAS  Google Scholar 

  29. Thomas CE, Ehrhardt A, Kay MA . Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003; 4: 346–358.

    Article  CAS  Google Scholar 

  30. Monahan PE, Samulski RJ . AAV vectors: is clinical success on the horizon? Gene Ther 2000; 7: 24–30.

    Article  CAS  Google Scholar 

  31. Buchschacher GL, Wong-Staal F . Development of lentiviral vectors for gene therapy for human diseases. Blood 2000; 95: 2499–2504.

    CAS  PubMed  Google Scholar 

  32. Wang X, Appukuttan B, Ott S, Patel R, Irvine J, Song J et al. Efficient and sustained transgene expression in human corneal cells mediated by a lentiviral vector. Gene Ther 2000; 7: 196–200.

    Article  CAS  Google Scholar 

  33. Takahashi K, Luo T, Saishin Y, Saishin Y, Sung J, Hackett S et al. Sustained transduction of ocular cells with a bovine immunodeficiency viral vector. Hum Gene Ther 2002; 13: 1305–1316.

    Article  CAS  Google Scholar 

  34. Bainbridge JW, Stephens C, Parsley K, Demaison C, Halfyard A, Thrasher AJ et al. In vivo gene transfer to the mouse eye using an HIV-based lentiviral vector; efficient long-term transduction of corneal endothelium and retinal pigment epithelium. Gene Ther 2001; 8: 1665–1668.

    Article  CAS  Google Scholar 

  35. Igarashi T, Miyake K, Suzuki N, Takahashi H, Shimada T . New strategy for in vivo transgene expression in corneal epithelial progenitor cells. Curr Eye Res 2002; 24: 46–50.

    Article  Google Scholar 

  36. Bennett J . Immune response following intraocular delivery of recombinant viral vectors. Gene Ther 2003; 10: 977–982.

    Article  CAS  Google Scholar 

  37. Fuller M, Anson DS . Can the use of HIV-1 derived gene transfer vectors for clinical application be justified? Curr Gene Ther 2004; 4: 65–77.

    Article  CAS  Google Scholar 

  38. Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 2006; 24: 687–696.

    Article  CAS  Google Scholar 

  39. Yanez-Munoz RJ, Balaggan KS, MacNeil A, Howe SJ, Schmidt M, Smith AJ et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat Med 2006; 12: 348–353.

    Article  CAS  Google Scholar 

  40. Limberis M, Anson DS, Fuller M, Parsons DW . Recovery of airway cystic fibrosis transmembrane conductance regulator function in mice with cystic fibrosis after single dose lentivirus-mediated gene transfer. Hum Gene Ther 2002; 13: 1961–1970.

    Article  CAS  Google Scholar 

  41. Xu ZL, Mizuguchi H, Mayumi T, Hayakawa T . Woodchuck hepatitis virus post-transcriptional regulation element enhances transgene expression from adenovirus vectors. Biochim Biophys Acta 2003; 1621: 266–271.

    Article  CAS  Google Scholar 

  42. Etiemble J, Degott C, Renard CA, Fourel G, Shamoon B, Vitvitski-Trepo L et al. Liver-specific expression and high oncogenic efficiency of a c-myc transgene activated by woodchuck hepatitis virus insertion. Oncogene 1994; 9: 727–737.

    CAS  PubMed  Google Scholar 

  43. Fourel G, Couturier J, Wei Y, Apiou F, Tiollais P, Buendia MA . Evidence for long-range oncogene activation by hepadnavirus insertion. EMBO J 1994; 13: 2526–2534.

    Article  CAS  Google Scholar 

  44. Kingsman SM, Mitrophanous K, Olsen JC . Potential oncogene activity of the woodchuck hepatitis post-transcriptional regulatory element (WPRE). Gene Ther 2005; 12: 3–4.

    Article  CAS  Google Scholar 

  45. Koldej R, Cmielewski P, Stocker A, Parsons DW, Anson DS . Optimisation of a multipartite human immunodeficiency virus based vector system; control of virus infectivity and large-scale production. J Gene Med 2005; 7: 1390–1399.

    Article  CAS  Google Scholar 

  46. Williams KA, Coster DJ . Penetrating corneal transplantation in the inbred rat: a new model. Invest Ophthalmol Vis Sci 1985; 26: 23–30.

    CAS  PubMed  Google Scholar 

  47. Williams KA, Standfield SD, Mills RA, Takano T, Larkin DF, Krishnan R et al. A new model of orthotopic penetrating corneal transplantation in the sheep: graft survival, phenotypes of infiltrating cells and local cytokine production. Aust NZ J Ophthalmol 1999; 27: 127–135.

    Article  CAS  Google Scholar 

  48. Jessup CF, Brereton HM, Coster DJ, Williams KA . In vitro adenovirus-mediated gene transfer to the human cornea. Br J Ophthalmol 2005; 89: 658–661.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Health & Medical Research Council of Australia, the Ophthalmic Research Institute of Australia and the Flinders Medical Centre Foundation. CK was supported by Nachwuchsfoerderungskredit der Universitaet Zürich, by the EMDO Stiftung Zürich, and by the Schweizerischer Fonds zur Bekaempfung und Verhuetung der Blindheit. The authors thank Mr Ray Yates for assistance with animal husbandry and Mr Joel Johnston for photography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K A Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, D., Kaufmann, C., Brereton, H. et al. Lentivirus-mediated gene transfer to the rat, ovine and human cornea. Gene Ther 14, 760–767 (2007). https://doi.org/10.1038/sj.gt.3302921

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302921

Keywords

This article is cited by

Search

Quick links