Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Suspension packaging cell lines for the simplified generation of T-cell receptor encoding retrovirus vector particles

Abstract

The transfer of T-cell receptor (TCR) genes into primary human T-cells to endow their specificity toward virus-infected and tumor cells is becoming an interesting tool for immunotherapy. TCR-modified T cells are mainly generated by retrovirus-mediated gene transfer. To produce TCR-retrovirus particles, fibroblast packaging cell lines are the most common tool. We constructed two packaging cell lines based on the human suspension T-cell lymphoma line Δβ-Jurkat, which lacks endogenous TCRβ-chains and is therefore unable to express CD3 complexes on the cell surface. After supply of gag-pol (murine leukemia virus (Mo-MLV)) and env (GALV or MLV-10A1) genes, a green fluorescent protein (GFP)-encoding retrovirus vector was transduced into both packaging cell clones, which then stably produced GFP-retroviruses with titers of up to 4 × 105 infectious particles (IP)/ml. After transfer of a TCRα/β-encoding retrovirus vector, Δβ-Jurkat/GALV and Δβ-Jurkat/10A1 cells expressed CD3 molecules on the cell surface. CD3-high expressing packaging cells were enriched by fluorescence-activated cell sorter sorting. In these cells, the CD3 expression level directly correlated with the titer of vector particles. TCR-retroviruses efficiently transduced human T-cell lines and primary T cells. In conclusion, the method allowed the fast and easy generation of high virus titer supernatants for TCR gene transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Eshhar Z . Tumor-specific T-bodies: towards clinical application. Cancer Immunol Immunother 1997; 45: 131–136.

    Article  CAS  PubMed  Google Scholar 

  2. Hombach A, Heuser C, Abken H . The recombinant T cell receptor strategy: insights into structure and function of recombinant immunoreceptors on the way towards an optimal receptor design for cellular immunotherapy. Curr Gene Ther 2002; 2: 211–226.

    Article  CAS  PubMed  Google Scholar 

  3. Schumacher TN . T-cell-receptor gene therapy. Nat Rev Immunol 2002; 2: 512–519.

    Article  CAS  PubMed  Google Scholar 

  4. Miller A . Retrovirus packaging cells. Hum Gene Ther 1990; 1: 5–14.

    Article  CAS  PubMed  Google Scholar 

  5. Pear WS, Nolan GP, Scott ML, Baltimore D . Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci USA 1993; 90: 8392–8396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cornetta K, Matheson L, Ballas C . Retroviral vector production in the National Gene Vector Laboratory at Indiana University. Gene Therapy 2005; 12: S28–S35.

    Article  CAS  PubMed  Google Scholar 

  7. Farson D, McGuinness R, Dull T, Limoli K, Lazar R, Jalali S et al. Large-scale manufacturing of safe and efficient retrovirus packaging lines for use in immunotherapy protocols. J Gene Med 1999; 1: 195–209.

    Article  CAS  PubMed  Google Scholar 

  8. Sheridan PL, Bodner M, Lynn A, Phuong TK, DePolo NJ, de la Vega J et al. Generation of retroviral packaging and producer cell lines for large-scale vector production and clinical application: improved safety and high titer. Mol Ther 2000; 2: 262–275.

    Article  CAS  PubMed  Google Scholar 

  9. Jung D, Jaeger E, Cayeux S, Blankenstein T, Hilmes C, Karbach J et al. Strong immunogenic potential of a B7 retroviral expression vector: generation of HLA-B7-restricted CTL response against selectable marker genes. Hum Gene Ther 1998; 9: 53–62.

    Article  CAS  PubMed  Google Scholar 

  10. Emerman M, Temin HM . Genes with promoters in retroviral vectors can be independently suppressed by an epigenetic mechanism. Cell 1984; 39: 459–467.

    Article  CAS  Google Scholar 

  11. Chan LM, Coutelle C, Themis M . A novel human suspension culture packaging cell line for production of high-titre retroviral vectors. Gene Therapy 2001; 8: 697–703.

    Article  CAS  PubMed  Google Scholar 

  12. Pizzato M, Merten OW, Blair ED, Takeuchi Y . Development of a suspension packaging cell line for production of high titre, serum-resistant murine leukemia virus vectors. Gene Therapy 2001; 8: 737–745.

    Article  CAS  PubMed  Google Scholar 

  13. Bunnell BA, Muul LM, Donahue RE, Blaese RM, Morgan RA . High-efficiency retroviral-mediated gene transfer into human and nonhuman primate peripheral blood lymphocytes. Proc Natl Acad Sci USA 1995; 92: 7739–7743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lam JS, Reeves ME, Cowherd R, Rosenberg SA, Hwu P . Improved gene transfer into human lymphocytes using retroviruses with the gibbon ape leukemia virus envelope. Hum Gene Ther 1996; 7: 1415–1422.

    Article  CAS  PubMed  Google Scholar 

  15. Uckert W, Becker C, Gladow M, Klein D, Kammertoens T, Pedersen L et al. Efficient gene transfer into primary human CD8+ T lymphocytes by MuLV-10A1 retrovirus pseudotype. Hum Gene Ther 2000; 11: 1005–1014.

    Article  CAS  PubMed  Google Scholar 

  16. Gladow M, Becker C, Blankenstein T, Uckert W . MLV-10A1 retrovirus pseudotype efficiently transduces primary human CD4+ T lymphocytes. J Gene Med 2000; 2: 409–415.

    Article  CAS  PubMed  Google Scholar 

  17. Kaptein LC, Greijer AE, Valerio D, van Beusechem VW . Optimized conditions for the production of recombinant amphotropic retroviral vector preparations. Gene Therapy 1997; 4: 172–176.

    Article  CAS  PubMed  Google Scholar 

  18. Merten OW . State-of-the-art of the production of retroviral vectors. J Gene Med 2004; 6 Suppl 1: S105–S124.

    Article  CAS  PubMed  Google Scholar 

  19. Kotani H, Newton III PB, Zhang S, Chiang YL, Otto E, Weaver L et al. Improved methods of retroviral vector transduction and production for gene therapy. Hum Gene Ther 1994; 5: 19–28.

    Article  CAS  PubMed  Google Scholar 

  20. Cosset FL, Takeuchi Y, Battini JL, Weiss RA, Collins MK . High-titer packaging cells producing recombinant retroviruses resistant to human serum. J Virol 1995; 69: 7430–7436.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Stitz J, Buchholz CJ, Engelstadter M, Uckert W, Bloemer U, Schmitt I et al. Lentiviral vectors pseudotyped with envelope glycoproteins derived from Gibbon Ape Leukemia Virus and Murine Leukemia Virus 10A1. Virology 2000; 273: 16–20.

    Article  CAS  PubMed  Google Scholar 

  22. Engels B, Cam H, Schuler T, Indraccolo S, Gladow M, Baum C et al. Retroviral vectors for high-level transgene expression in T lymphocytes. Hum Gene Ther 2003; 14: 1155–1168.

    Article  CAS  PubMed  Google Scholar 

  23. Engels B, Noessner E, Frankenberger B, Blankenstein T, Schendel DJ, Uckert W . Redirecting human T lymphocytes toward renal cell carcinoma specificity by retroviral transfer of T cell receptor genes. Hum Gene Ther 2005; 16: 799–810.

    Article  CAS  PubMed  Google Scholar 

  24. Jantzer P, Schendel DJ . Human renal cell carcinoma antigen-specific CTLs: antigen-driven selection and long-term persistence in vivo. Cancer Res 1998; 58: 3078–3086.

    CAS  PubMed  Google Scholar 

  25. Horn PA, Topp MS, Morris JC, Riddell SR, Kiem HP . Highly efficient gene transfer into baboon marrow repopulating cells using GALV-pseudotype oncoretroviral vectors produced by human packaging cells. Blood 2002; 100: 3960–3967.

    Article  CAS  PubMed  Google Scholar 

  26. Uckert W, Kammertons T, Haack K, Qin Z, Gebert J, Schendel DJ et al. Double suicide gene (cytosine deaminase and herpes simplex virus thymidine kinase) but not single gene transfer allows reliable elimination of tumor cells in vivo. Hum Gene Ther 1998; 9: 855–865.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank U Fischer and I Küttner for excellent technical assistance and T Blankenstein and J Charo for helpful discussions and critical reading of the manuscript. This work was supported by grants from the Deutsche Forschungsgemeinschaft (Sonderforschungsprogramm 1230, Transregio-Sonderforschungsbereich 36) and the Wilhelm Sander-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Uckert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reuß, S., Biese, P., Cosset, FL. et al. Suspension packaging cell lines for the simplified generation of T-cell receptor encoding retrovirus vector particles. Gene Ther 14, 595–603 (2007). https://doi.org/10.1038/sj.gt.3302906

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302906

Keywords

This article is cited by

Search

Quick links