Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Coxsackie adenovirus receptor and ανβ3/ανβ5 integrins in adenovirus gene transfer of rat cochlea

Abstract

This study was designed to determine whether Coxsackie adenovirus receptor (CAR) and ανβ3/ανβ5 integrin co-receptors are involved in adenovirus gene transfer in the rat cochlea. We find that CAR and integrin co-receptors are expressed in every cell subtype transduced by the adenoviral vector Ad5 ΔE1E3/cytomegalovirus/green fluorescent protein (GFP) on cochlear slices in vitro. The spiral ganglion neurons, which do not express CAR, were not transduced by the virus. Blocking these receptors by monoclonal antibodies decreased transgene expression, whereas disrupting tight junctions with ethylenediaminetetraacetic acid led to an increased transgene expression. However, sensory hair cells and strial cells also expressing CAR and αν integrins were not transduced by the vector. GFP expression was also studied in vivo. Perilymphatic perfusion of adenovirus in vivo did not affect hearing and only cells lining the perilymphatic spaces were transduced. Endolymphatic perfusion resulted in low-frequency hearing loss and although some cells of the organ of Corti were efficiently transduced, the sensory and the strial cells were not. Transduced sensory and strial cells were occasionally observed in cochleas after single shot of adenovirus. Pretreatment with anti-CAR and anti-αν antibodies decreases GFP expression in vivo, suggesting that the CAR/αν integrin pathway is involved in adenovirus transduction in the cochlea.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Kanzaki S, Ogawa K, Camper SA, Raphael Y . Transgene expression in neonatal mouse inner ear explants mediated by first and advanced generation adenovirus vectors. Hear Res 2002; 169: 112–120.

    Article  CAS  PubMed  Google Scholar 

  2. Yamasoba T, Suzuki M, Kondo K . Transgene expression in mature guinea pig cochlear cells in vitro. Neurosci Lett 2002; 335: 13–16.

    Article  CAS  PubMed  Google Scholar 

  3. Lalwani AK, Mhatre AN . Cochlear gene therapy. Ear Hear 2003; 24: 342–348.

    Article  PubMed  Google Scholar 

  4. Stover T, Yagi M, Raphael Y . Cochlear gene transfer: round window versus cochleostomy inoculation. Hear Res 1999; 136: 124–130.

    Article  CAS  PubMed  Google Scholar 

  5. Dazert S, Aletsee C, Brors D, Gravel C, Sendtner M, Ryan A . In vivo adenoviral transduction of the neonatal rat cochlea and middle ear. Hear Res 2001; 151: 30–40.

    Article  CAS  PubMed  Google Scholar 

  6. Ishimoto S, Kawamoto K, Kanzaki S, Raphael Y . Gene transfer into supporting cells of the organ of Corti. Hear Res 2002; 173: 187–197.

    Article  CAS  PubMed  Google Scholar 

  7. Duan LM, Bordet T, Mezzina M, Kahn A, Ulfendahl M . Adenoviral and adeno-associated viral vector mediated gene transfer in the guinea pig cochlea. NeuroReport 2002; 13: 1295–1299.

    Article  CAS  Google Scholar 

  8. Luebke AE, Foster PK, Muller CD, Peel AL . Cochlear function and transgene expression in the guinea pig cochlea, using adenovirus- and adeno-associated virus-directed gene transfer. Hum Gene Therapy 2001; 12: 773–781.

    Article  CAS  Google Scholar 

  9. Luebke AE, Steiger JD, Hodges BL, Amalfitano A . Modified adenovirus can transfect cochlear hair cells in vivo without compromising cochlear function. Gene Ther 2001; 8: 789–794.

    Article  CAS  PubMed  Google Scholar 

  10. Staecker H, Li D, O'Malley BWJ, Van De Water TR . Gene expression in the mammalian cochlea: a study of multiple vector systems. Acta Otolaryngol 2001; 121: 157–163.

    Article  CAS  PubMed  Google Scholar 

  11. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  12. Cohen CJ, Shieh JT, Pickles RJ, Okegawa T, Hsieh JT, Bergelson JM . The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci USA 2001; 98: 15191–15196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Walters RW, Freimuth P, Moninger TO, Ganske I, Zabner J, Welsh MJ . Adenovirus fiber disrupts CAR-mediated intercellular adhesion allowing virus escape. Cell 2002; 110: 789–799.

    Article  CAS  PubMed  Google Scholar 

  14. Nemerow GR, Stewart PL . Role of alpha(v) integrins in adenovirus cell entry and gene delivery. Microbiol Mol Biol Rev 1999; 63: 725–734.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Goldman MJ, Wilson JM . Expression of alpha v beta 5 integrin is necessary for efficient adenovirus-mediated gene transfer in the human airway. J Virol 1995; 69: 5951–5958.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gu W, Ogose A, Kawashima H, Ito M, Ito T, Matsuba A et al. High-level expression of the coxsackievirus and adenovirus receptor messenger RNA in osteosarcoma, Ewing's sarcoma, and benign neurogenic tumors among musculoskeletal tumors. Clin Cancer Res 2004; 10: 3831–3838.

    Article  CAS  PubMed  Google Scholar 

  17. Qin M, Chen S, Yu T, Escuadro B, Sharma S, Batra RK . Coxsackievirus adenovirus receptor expression predicts the efficiency of adenoviral gene transfer into non-small cell lung cancer xenografts. Clin Cancer Res 2003; 9: 4992–4999.

    CAS  PubMed  Google Scholar 

  18. Excoffon KJ, Avenarius MR, Hansen MR, Kimberling WJ, Najmabadi H, Smith RJ et al. The Coxsackievirus and adenovirus receptor: a new adhesion protein in cochlear development. Hear Res 2006; 215: 1–9.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang X, Sawyer GJ, Dong X, Qiu Y, Collins L, Fabre JW . The in vivo use of chloroquine to promote non-viral gene delivery to the liver via the portal vein and bile duct. J Gene Med 2003; 5: 209–218.

    Article  CAS  PubMed  Google Scholar 

  20. Chang SF, Chang HY, Tong YC, Chen SH, Hsaio FC, Lu SC et al. Nonionic polymeric micelles for oral gene delivery in vivo. Hum Gene Ther 2004; 15: 481–493.

    Article  CAS  PubMed  Google Scholar 

  21. Dechecchi MC, Tamanini A, Bonizzato A, Cabrini G . Heparan sulfate glycosaminoglycans are involved in adenovirus type 5 and 2-host cell interactions. Virology 2000; 268: 382–390.

    CAS  PubMed  Google Scholar 

  22. Pickles RJ, Fahrner JA, Petrella JM, Boucher RC, Bergelson JM . Retargeting the coxsackievirus and adenovirus receptor to the apical surface of polarized epithelial cells reveals the glycocalyx as a barrier to adenovirus-mediated gene transfer. J Virol 2000; 74: 6050–6057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stonebraker JR, Wagner D, Lefensty RW, Burns K, Gendler SJ, Bergelson JM et al. Glycocalyx restricts adenoviral vector access to apical receptors expressed on respiratory epithelium in vitro and in vivo: role for tethered mucins as barriers to lumenal infection. J Virol 2004; 78: 13755–13768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Takumida M, Harada Y, Wersall J, Bagger-Sjoback D . The glycocalyx of inner ear sensory and supporting cells. Acta Otolaryngol Suppl 1988; 458: 84–89.

    Article  CAS  PubMed  Google Scholar 

  25. Kawamoto K, Ishimoto S, Minoda R, Brough DE, Raphael Y . Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci 2003; 23: 4395–4400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stover T, Yagi M, Raphael Y . Transduction of the contralateral ear after adenovirus-mediated cochlear gene transfer. Gene Therapy 2000; 7: 377–383.

    Article  CAS  PubMed  Google Scholar 

  27. Soto-Prior A, Lavigne-Rebillard M, Lenoir M, Ripoll C, Rebillard G, Vago P et al. Identification of preferentially expressed cochlear genes by systematic sequencing of a rat cochlea cDNA library. Brain Res Mol Brain Res 1997; 47: 1–10.

    Article  CAS  PubMed  Google Scholar 

  28. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389–3402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jagger DJ, Robertson D, Housley GD . A technique for slicing the rat cochlea around the onset of hearing. J Neurosci Methods 2000; 104: 77–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We specially thank Dr Régis Nouvian and Prof Mondain for their helpful advice, Dr Lloyd for carefully editing the manuscript, and Sabine Ladrech and Nicole Renard for their technical assistance. This work was supported by the Spanish Ministry of Science and Technology to AB, the Generalitat de Catalunya (DURSI-ACI2001/8 and 2005SGR00008) to X Estivill (CRG) and the Instituto de Salud Carlos III (G03/203 and PI052347).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-L Puel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venail, F., Wang, J., Ruel, J. et al. Coxsackie adenovirus receptor and ανβ3/ανβ5 integrins in adenovirus gene transfer of rat cochlea. Gene Ther 14, 30–37 (2007). https://doi.org/10.1038/sj.gt.3302826

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302826

Keywords

This article is cited by

Search

Quick links