Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium

Abstract

For the application of RNA interference (RNAi) in vivo the functional delivery of short interfering RNAs (siRNAs) is still the major obstacle. Therefore, delivery technologies need to be established for the systemic application of RNAi in vivo. Here we report uptake, biodistribution and in vivo efficacy of siRNA molecules formulated into siRNA-lipoplexes. The applied formulation is based on complex formation of positively charged liposomes, a mixture of cationic and fusogenic lipids complexed with the negatively charged siRNA. We determined by fluorescence microscopy the temporal and spatial distribution of fluorescently labeled siRNA-lipoplexes, the body clearance and endothelial cell type specific uptake after single intravenous injection. Furthermore, by using siRNA molecules for targeting endothelia-specifically expressed genes, such as CD31 and Tie2, we were able to demonstrate downregulation of the corresponding mRNA and protein in vivo. Taken together, we show the applicability of this non-viral delivery technology for inducing RNAi in the vasculature of mice after systemic application.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Chiu YL, Rana TM . siRNA function in RNAi: a chemical modification analysis. RNA 2003; 9: 1034–1048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Czauderna F, Fechtner M, Dames S, Aygun H, Klippel A, Pronk GJ et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 2003; 31: 2705–2716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004; 432: 173–178.

    Article  CAS  PubMed  Google Scholar 

  4. Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 2005; 23: 1002–1007.

    Article  CAS  PubMed  Google Scholar 

  5. Uprichard SL . The therapeutic potential of RNA interference. FEBS Lett 2005; 579: 5996–6007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reich SJ, Fosnot J, Kuroki A, Tang W, Yang X, Maguire AM et al. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol Vis 2003; 9: 210–216.

    CAS  PubMed  Google Scholar 

  7. Karagiannis TC, El-Osta A . RNA interference and potential therapeutic applications of short interfering RNAs. Cancer Gene Ther 2005; 12: 787–795.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang X, Shan P, Jiang D, Noble PW, Abraham NG, Kappas A et al. Small interfering RNA targeting heme oxygenase-1 enhances ischemia–reperfusion-induced lung apoptosis. J Biol Chem 2004; 279: 10677–10684.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang W, Yang H, Kong X, Mohapatra S, San Juan-Vergara H, Hellermann G et al. Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene. Nat Med 2005; 11: 56–62.

    Article  CAS  PubMed  Google Scholar 

  10. Ge Q, Filip L, Bai A, Nguyen T, Eisen HN, Chen J . Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc Natl Acad Sci USA 2004; 101: 8676–8681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bitko V, Musiyenko A, Shulyayeva O, Barik S . Inhibition of respiratory viruses by nasally administered siRNA. Nat Med 2005; 11: 50–55.

    Article  CAS  PubMed  Google Scholar 

  12. Dorn G, Patel S, Wotherspoon G, Hemmings-Mieszczak M, Barclay J, Natt FJ et al. siRNA relieves chronic neuropathic pain. Nucleic Acids Res 2004; 32: e49.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Turner JJ, Arzumanov AA, Gait MJ . Synthesis, cellular uptake and HIV-1 Tat-dependent trans-activation inhibition activity of oligonucleotide analogues disulphide-conjugated to cell-penetrating peptides. Nucleic Acids Res 2005; 33: 27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ et al. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 2003; 278: 585–590.

    Article  CAS  PubMed  Google Scholar 

  15. Shadidi M, Sioud M . Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells. FASEB J 2003; 17: 256–258.

    Article  CAS  PubMed  Google Scholar 

  16. Muratovska A, Eccles MR . Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett 2004; 558: 63–68.

    Article  CAS  PubMed  Google Scholar 

  17. Landen Jr CN, Chavez-Reyes A, Bucana C, Schmandt R, Deavers MT, Lopez-Berestein G et al. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res 2005; 65: 6910–6918.

    Article  CAS  PubMed  Google Scholar 

  18. Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 2004; 32: e149.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Takeshita F, Minakuchi Y, Nagahara S, Honma K, Sasaki H, Hirai K et al. Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc Natl Acad Sci USA 2005; 102: 12177–12182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A . RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Therapy 2005; 12: 461–466.

    Article  CAS  PubMed  Google Scholar 

  21. Chae SS, Paik JH, Furneaux H, Hla T . Requirement for sphingosine 1-phosphate receptor-1 in tumor angiogenesis demonstrated by in vivo RNA interference. J Clin Invest 2004; 114: 1082–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ . Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res 2005; 65: 8984–8992.

    Article  CAS  PubMed  Google Scholar 

  23. Song E, Zhu P, Lee SK, Chowdhury D, Kussman S, Dykxhoorn DM et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 2005; 23: 709–717.

    Article  CAS  PubMed  Google Scholar 

  24. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 1987; 84: 7413–7417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barron LG, Uyechi LS, Szoka Jr FC . Cationic lipids are essential for gene delivery mediated by intravenous administration of lipoplexes. Gene Therapy 1999; 6: 1179–1183.

    Article  CAS  PubMed  Google Scholar 

  26. Liu TG, Yin JQ, Shang BY, Min Z, He HW, Jiang JM et al. Silencing of hdm2 oncogene by siRNA inhibits p53-dependent human breast cancer. Cancer Gene Ther 2004; 11: 748–756.

    Article  CAS  PubMed  Google Scholar 

  27. Yano J, Hirabayashi K, Nakagawa S, Yamaguchi T, Nogawa M, Kashimori I et al. Antitumor activity of small interfering RNA/cationic liposome complex in mouse models of cancer. Clin Cancer Res 2004; 10: 7721–7726.

    Article  CAS  PubMed  Google Scholar 

  28. Nogawa M, Yuasa T, Kimura S, Tanaka M, Kuroda J, Sato K et al. Intravesical administration of small interfering RNA targeting PLK-1 successfully prevents the growth of bladder cancer. J Clin Invest 2005; 115: 978–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chien PY, Wang J, Carbonaro D, Lei S, Miller B, Sheikh S et al. Novel cationic cardiolipin analogue-based liposome for efficient DNA and small interfering RNA delivery in vitro and in vivo. Cancer Gene Ther 2005; 12: 321–328.

    Article  CAS  PubMed  Google Scholar 

  30. Geary RS, Watanabe TA, Truong L, Freier S, Lesnik EA, Sioufi NB et al. Pharmacokinetic properties of 2′-O-(2-methoxyethyl)-modified oligonucleotide analogs in rats. J Pharmacol Exp Ther 2001; 296: 890–897.

    CAS  PubMed  Google Scholar 

  31. Braasch DA, Paroo Z, Constantinescu A, Ren G, Oz OK, Mason RP et al. Biodistribution of phosphodiester and phosphorothioate siRNA. Bioorg Med Chem Lett 2004; 14: 1139–1143.

    Article  CAS  PubMed  Google Scholar 

  32. Chiu YL, Rana TM . RNAi in human cells: basic structural and functional features of small interfering RNA. Mol Cell 2002; 10: 549–561.

    Article  CAS  PubMed  Google Scholar 

  33. Zelphati O, Szoka Jr FC . Mechanism of oligonucleotide release from cationic liposomes. Proc Natl Acad Sci USA 1996; 93: 11493–11498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Allen TM, Hansen CB, de Menezes DEL . Pharmacokinetics of long-circulating liposomes. Advanced Drug Delivery Reviews 1995; 16: 267–284.

    Article  CAS  Google Scholar 

  35. Liu L, Zhou X, Shi J, Xie X, Yuan Z . Toll-like receptor-9 induced by physical trauma mediates release of cytokines following exposure to CpG motif in mouse skin. Immunology 2003; 110: 341–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA . Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001; 413: 732–738.

    CAS  PubMed  Google Scholar 

  37. Thurston G . Role of Angiopoietins and Tie receptor tyrosine kinases in angiogenesis and lymphangiogenesis. Cell Tissue Res 2003; 314: 61–68.

    Article  CAS  PubMed  Google Scholar 

  38. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 1996; 87: 1161–1169.

    Article  CAS  PubMed  Google Scholar 

  39. Hamar P, Song E, Kokeny G, Chen A, Ouyang N, Lieberman J . Small interfering RNA targeting Fas protects mice against renal ischemia–reperfusion injury. Proc Natl Acad Sci USA 2004; 101: 14883–14888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim B, Tang Q, Biswas PS, Xu J, Schiffelers RM, Xie FY et al. Inhibition of ocular angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes: therapeutic strategy for herpetic stromal keratitis. Am J Pathol 2004; 165: 2177–2185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Takei Y, Kadomatsu K, Yuzawa Y, Matsuo S, Muramatsu T . A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res 2004; 64: 3365–3370.

    Article  CAS  PubMed  Google Scholar 

  42. Eliyahu H, Servel N, Domb AJ, Barenholz Y . Lipoplex-induced hemagglutination: potential involvement in intravenous gene delivery. Gene Therapy 2002; 9: 850–858.

    Article  CAS  PubMed  Google Scholar 

  43. Loisel S, Le Gall C, Doucet L, Ferec C, Floch V . Contribution of plasmid DNA to hepatotoxicity after systemic administration of lipoplexes. Hum Gene Ther 2001; 12: 685–696.

    Article  CAS  PubMed  Google Scholar 

  44. Tousignant JD, Gates AL, Ingram LA, Johnson CL, Nietupski JB, Cheng SH et al. Comprehensive analysis of the acute toxicities induced by systemic administration of cationic lipid:plasmid DNA complexes in mice. Hum Gene Ther 2000; 11: 2493–2513.

    Article  CAS  PubMed  Google Scholar 

  45. Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I . Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 2005; 23: 457–462.

    Article  CAS  PubMed  Google Scholar 

  46. Ma Z, Li J, He F, Wilson A, Pitt B, Li S . Cationic lipids enhance siRNA-mediated interferon response in mice. Biochem Biophys Res Commun 2005; 330: 755–759.

    Article  CAS  PubMed  Google Scholar 

  47. Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 2005; 11: 263–270.

    Article  CAS  PubMed  Google Scholar 

  48. Krasnici S, Werner A, Eichhorn ME, Schmitt-Sody M, Pahernik SA, Sauer B et al. Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. Int J Cancer 2003; 105: 561–567.

    Article  CAS  PubMed  Google Scholar 

  49. Thurston G, McLean JW, Rizen M, Baluk P, Haskell A, Murphy TJ et al. Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J Clin Invest 1998; 101: 1401–1413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Carmeliet P . Angiogenesis in health and disease. Nat Med 2003; 9: 653–660.

    Article  CAS  PubMed  Google Scholar 

  51. Carmeliet P, Jain RK . Angiogenesis in cancer and other diseases. Nature 2000; 407: 249–257.

    Article  CAS  PubMed  Google Scholar 

  52. Tozer GM, Kanthou C, Baguley BC . Disrupting tumour blood vessels. Nat Rev Cancer 2005; 5: 423–435.

    Article  CAS  PubMed  Google Scholar 

  53. Carmeliet P . Manipulating angiogenesis in medicine. J Intern Med 2004; 255: 538–561.

    Article  PubMed  Google Scholar 

  54. Klippel A, Escobedo MA, Wachowicz MS, Apell G, Brown TW, Giedlin MA et al. Activation of phosphatidylinositol 3-kinase is sufficient for cell cycle entry and promotes cellular changes characteristic of oncogenic transformation. Mol Cell Biol 1998; 18: 5699–5711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Klippel A, Escobedo JA, Hirano M, Williams LT . The interaction of small domains between the subunits of phosphatidylinositol 3-kinase determines enzyme activity. Mol Cell Biol 1994; 14: 2675–2685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Leenders F, Mopert K, Schmiedeknecht A, Santel A, Czauderna F, Aleku M et al. PKN3 is required for malignant prostate cell growth downstream of activated PI 3-kinase. EMBO J 2004; 23: 3303–3313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Hüseyin Aygün (BioSpring, Frankfurt a. M., Germany) for providing high-quality siRNA molecules. This study was supported in part by a grant from the Bundesministerium für Bildung und Forschung (Grant #0313066E), the Senatsverwaltung Berlin (Grant #SenBB3066E) and the European Union (European Fond for regional Development).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Kaufmann.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santel, A., Aleku, M., Keil, O. et al. A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium. Gene Ther 13, 1222–1234 (2006). https://doi.org/10.1038/sj.gt.3302777

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302777

Keywords

This article is cited by

Search

Quick links